UPDATED 7th EDITION

NEW SYLLABUS MATHEMATICS WORKBOOK FULL SOLUTIONS
 A Comprehensive Mathematics Programme for Grade 8

Consultant•Dr Yeap Ban Har Authors • Dr Joseph Yeo • Teh Keng Seng•Loh Cheng Yee • Ivy Chow

- Jacinth Liew • Ong Chan Hong • Low Pei Yun

ANSWERS

Chapter 1 Number Operations and Direct and Inverse Proportions

Basic

1. (a) We observe that 48 is close to 49 which is a perfect square. Thus $\sqrt{48} \approx \sqrt{49}=7$.
(b) We observe that 626 is close to 625 which is a perfect square. Thus $\sqrt{626} \approx \sqrt{625}=25$.
(c) 65 is close to 64 which is a perfect cube. Thus $\sqrt[3]{65} \approx \sqrt[3]{64}=4$
(d) 998 is close to 1000 which is a perfect cube. Thus $\sqrt[3]{998} \approx \sqrt[3]{1000}=10$
(e) We observe that 99 is close to 100 which is a perfect square and 28 is close to 27 which is a perfect cube. Thus $\sqrt{99}-\sqrt[3]{28} \approx \sqrt{100}-\sqrt[3]{27}=7$.
(f) We observe that 19 is close to 20 and 10004 is close to 10000 which is a perfect square. Thus $19^{2} \times \sqrt{10004} \approx 20^{2} \times \sqrt{10000}=400 \times 100$

$$
=40000
$$

(g) We observe that 11 is close to 10 and 7999 is close to 8000 which is a perfect cube. Thus $11^{3}+\sqrt[3]{7999} \approx 10^{3}+\sqrt[3]{8000}=1000+20=1020$.
2. (a) $693+1262-\sqrt{71289} \times \sqrt[3]{912673}=318486$
(b) $\frac{\sqrt[3]{12167} \times 57^{2}-56^{3}}{\sqrt{153664}}=-257.3699$ (to 4 d.p.)
(c) $\frac{(\sqrt{576}+\sqrt{961}-\sqrt[3]{12167})}{\sqrt[3]{4096}}=2$
(d) $\frac{18^{3}}{\sqrt{5184}}+\frac{16^{2}-\sqrt[3]{75357}}{22^{3}-103^{2}-\sqrt[3]{753571}}$
3. (a) All zeros between non-zero digits are significant. 5 significant figures
(b) In a decimal, all zeros before a non-zero digit are not significant.
4 significant figures
(c) 5 significant figures
(d) 9 or 10 significant figures.
4. (a) 3.9 (to 2 s.f.)
(b) 20 (to 2 s.f.)
(c) 38 (to 2 s.f.)
(d) 4.07 (to 3 s.f.)
(e) 18.1 (to 3 s.f.)
(f) 0.0326 (to 3 s.f.)
(g) 0.0770 (to 3 s.f.)
(h) 0.00817 (to 3 s.f.)
(i) 18.14 (to 4 s.f.)
(j) 240.0 (to 4 s.f.)
(k) 5004 (to 4 s.f.)
(l) 0.05445 (to 4 s.f.)
5. (a) 20 (to 1 s.f.)
(b) 19 (to 2 s.f.)
6. (a) 0.007 (to 1 s.f.)
(b) 0.00720 (to 3 s.f.)
7. (a) 984.6 (to 4 s.f.)
(b) 984.61 (to the nearest hundredth)
8. (a) 0.000143 (to 3 s.f.)
(b) 1000 (to 2 s.f.)
9. (a) 0.3403 (to 4 s.f.)
(b) 10.255 (to 5 s.f.)
(c) 64704800 (to 6 s.f.)
10. (a) 428.2 (to 4 s.f.)

The number of decimal places in the answer is 1 .
(b) 0.00090 (to 5 d.p.)

The number of significant figures is 1 or 2 , depending on whether the last zero is included or otherwise.
11. (a) $61.99406-29.98078$
$=32.01328$
$=30$ (to 1 s.f.)
(b) $64.96702-36.23087$
$=28.73615$
$=30$ (to 1 s.f.)
(c) 4987×91.2
$=454814.4$
$=500000$ (to 1 s.f.)
(d) 30.9×98.6
$=3046.74$
$=3000$ (to 1 s.f.)
(e) 0.0079×21.7
$=0.17143$
$=0.2$ (to 1 s.f.)
(f) 1793×0.00097
$=1.73921$
$=2$ (to 1 s.f.)
(g) 9801×0.0613
$=600.8013$
$=600$ (to 1 s.f.)
(h) $(8.907)^{2}$
$=79.334649$
$=80$ (to 1 s.f.)
(i) $(398)^{2} \times 0.062$
$=9821.048$
$=10000$ (to 1 s.f.)
(j) $81.09 \div 1.592$
$=50.935 \ldots$
$=50$ (to 1 s.f.)
(k) $\frac{49.82}{9.784}$
$=5.09198 \ldots$
$=5$ (to 1 s.f.)
(l) $\frac{163.4}{0.0818}$
$=1997.555012 \ldots$
$=2000$ (to 1 s.f.)
(m) $15.002 \div 0.01999-68.12$

$$
\begin{aligned}
& =682.3552376 \ldots \\
& =700 \text { (to } 1 \text { s.f.) }
\end{aligned}
$$

(n) $\frac{59.26 \times 5.109}{3.817}$
$=\frac{302.75934}{3.817}$
$=79.31866387 \ldots$
$=80$ (to 1 s.f.)
(o) $\frac{4.18 \times 0.0309}{0.0212}$
$=\frac{0.129162}{0.0212}$
$=6.09254717$
$=6$ (to 1 s.f.)
(p) $\frac{16.02 \times 0.0341}{0.07921}$
$=\frac{0.546282}{0.07921}$
$=6.896629213 \ldots$
$=7$ (to 1 s.f.)
(q) $\sqrt{\frac{35.807}{101.09}}$
$=\sqrt{0.35420912}$
$=0.595154703 \ldots$
$=0.6$ (to 1 s.f.)
(r) $\sqrt{\frac{18.01 \times 36.01}{1.989}}$
$=\sqrt{\frac{648.5401}{1.989}}$
$=\sqrt{326.0633987}$
$=18.05722566 \ldots$
$=20$ (to 1 s.f.)
12. $340 \div 21$
$\approx 340 \div 20$
$=34 \div 2$
$=17$
\therefore Rizwan's answer is wrong.
Using a calculator, the actual answer is 16.19047619. Hence, his estimated value 15 is close to actual value 16.19047619.

He has underestimated the value by using the estimation $300 \div 20$.
13. (i) (a) $45.3125=45$ (to 2 s.f.)
(b) $3.9568=4.0$ (to 2 s.f.)
(ii) $45.3125 \div 3.9568$

$$
\begin{aligned}
& \approx 45 \div 4.0 \\
& =11.25
\end{aligned}
$$

(iii) Using a calculator, the actual value is 11.451804 49. The estimated value is close to the actual value. The estimated value is approximately 0.20 less than the actual value.
14. (a) $0.05263981=0.052640$ (to 5 s.f.)
(b) 1793×0.000979
$=1.755347$
$=1.8$ (to 1 d.p.)
(c) $\frac{31.205 \times 4.97}{1.925}$

$$
\begin{aligned}
& =\frac{155.08885}{1.925} \\
& =80.56563636 \ldots \\
& =80 \text { (to } 1 \text { s.f.) }
\end{aligned}
$$

15. The calculation is $297 \div 19.91$.
$297 \div 19.91$
$\approx 300 \div 20$
$=15$ (to 2 s.f.)
15 litres of petrol is used to travel 1 km .
16. Total cost of set meals $=$ PKR 6.90×9

$$
\begin{aligned}
& =\text { PKR } 7 \times 9 \\
& =\text { PKR } 63
\end{aligned}
$$

Ahsan should pay less than PKR 63 for the set meals. Therefore, he has paid the wrong amount.
17. Cost of $15 l$ of petrol $=\frac{\operatorname{PKR~} 14.70}{7} \times 15$

$$
=\text { PKR } 31.50
$$

18. (i) $y=k x$

When $x=200, y=40$,

$$
40=k(200)
$$

$$
k=\frac{40}{200}
$$

$$
=\frac{1}{5}
$$

$$
\therefore y=\frac{1}{5} x
$$

(ii) When $x=15$,

$$
\begin{aligned}
y & =\frac{1}{5}(15) \\
& =3
\end{aligned}
$$

(iii) When $y=8$,

$$
\begin{aligned}
& 8=\frac{1}{5} x \\
& x=40
\end{aligned}
$$

19. (i) $y=k(4 x+1)$

When $x=2, y=3$,

$$
\begin{aligned}
3 & =k(8+1) \\
k & =\frac{3}{9} \\
& =\frac{1}{3} \\
\therefore y & =\frac{1}{3}(4 x+1)
\end{aligned}
$$

(ii) When $x=5$,

$$
\begin{aligned}
y & =\frac{1}{3}(20+1) \\
& =7
\end{aligned}
$$

(iii) When $y=11$,

$$
\begin{aligned}
11 & =\frac{1}{3}(4 x+1) \\
33 & =4 x+1 \\
4 x & =32 \\
x & =8
\end{aligned}
$$

20. Time taken for 1 tap to fill the bath tub $=15 \times 2$

$$
=30 \text { minutes }
$$

Time taken for 3 taps to fill the bath tub $=\frac{30}{3}$

$$
=10 \text { minutes }
$$

21. (i) When $x=5$,

$$
\begin{aligned}
y & =100 \times 2 \\
& =200
\end{aligned}
$$

(ii) $y=\frac{k}{x}$

When $x=10, y=100$,

$$
\begin{aligned}
100 & =\frac{k}{10} \\
k & =1000 \\
\therefore y & =\frac{1000}{x}
\end{aligned}
$$

(iii) When $y=80$,

$$
\begin{aligned}
80 & =\frac{1000}{x} \\
x & =\frac{1000}{80} \\
& =12.5
\end{aligned}
$$

Intermediate

22. (a) (i) Divide 216000 by the smallest prime number until we get 1 .

$216000=2^{6} \times 3^{3} \times 5^{3}$
(ii) Divide 518400 by the smallest prime number until we get 1 .

2	518400
2	259200
2	129600
2	64800
2	32400
2	16200
2	8100
2	4050
3	2025
3	675
3	225
3	75
5	25
5	5
	1

$518400=2^{8} \times 3^{4} \times 5^{2}$
(b) (i) $216000=2^{6} \times 3^{3} \times 5^{3}=\left(2^{2} \times 3 \times 5\right)^{3}$
$\sqrt[3]{216000}=2^{2} \times 3 \times 5=60$
(ii) $518400=2^{8} \times 3^{4} \times 5^{2}=\left(2^{4} \times 3^{2} \times 5\right)^{2}$ $\sqrt{518400}=2^{4} \times 3^{2} \times 5=720$
23. (i) Divide 13824 by the smallest prime number until we get 1 .

2	13824
2	6912
2	3456
2	1728
2	864
2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

$13824=2^{9} \times 3^{3}$

5	42875
5	8575
5	1715
7	343
7	49
7	7
	1

$42875=5^{3} \times 7^{3}$
$13824 \times 42875=2^{9} \times 3^{3} \times 5^{3} \times 7^{3}$
(ii) $13824 \times 42875=2^{9} \times 3^{3} \times 5^{3} \times 7^{3}$

$$
=\left(2^{3} \times 3 \times 5 \times 7\right)^{3}
$$

$$
\sqrt[3]{13824 \times 42875}=2^{3} \times 3 \times 5 \times 7=840
$$

24. (a) $\frac{2}{11}=0.1818$

$$
\sqrt{0.325}=0.1803
$$

$$
(0.428)^{2}=0.1830
$$

$\therefore 0.1 \dot{8},(0.428)^{2}, \frac{2}{11}, \sqrt{0.325}$
(b) $\frac{10}{11}=0.9090$

$$
\sqrt[3]{0.955}=0.984
$$

$\therefore 0 . \dot{9}, \sqrt[3]{0.955}, 0.90 \dot{9}, \frac{10}{11}$
(c) $\frac{\pi}{3}=1.04720$
$1 \frac{1}{9}=1.1111$
$\frac{12}{11}=1.0909$
$\frac{\sqrt{5}}{2}=1.11803$
$0 . \dot{0} \dot{1}$
1.00
$\therefore \frac{\sqrt{5}}{2}, 1 \frac{1}{9}, \frac{12}{11}, \frac{\pi}{3}, 1 . \dot{0} \dot{1}$
25. (a) $[109-(-19)] \div(-2)^{3} \times(-5)$

$$
\begin{aligned}
& =(109+19) \div(-2)^{3} \times(-5) \\
& =128 \div(-8) \times(-5) \\
& =\left(\frac{128}{-8}\right) \times(-5) \\
& =-16 \times(-5) \\
& =-(-80) \\
& =80
\end{aligned}
$$

(b) $(13-9)^{2}-5^{2}-(28-31)^{3}$

$$
\begin{aligned}
& =4^{2}-5^{2}-(-3)^{3} \\
& =16-25-(-27) \\
& =16-25+27 \\
& =18
\end{aligned}
$$

(c) $\left[(-5) \times(-8)^{2}-(-2)^{3} \times 7\right] \div(-11)$
$=[(-5) \times 64-(-8) \times 7] \div(-11)$
$=[-(5 \times 64)-[-(8 \times 7)]] \div(-11)$
$=[-320-(-56)] \div(-11)$
$=(-320+56) \div(-11)$
$=(-264) \div(-11)$
$=24$
(d) $\{[(-23)-(-11)] \div 6-7 \div(-7)\} \times 1997$
$=[(-23+11) \div 6-7 \div(-7) \times 1997$
$=[(-12) \div 6-7 \div(-7)] \times 1997$
$=\left[\left(\frac{-12}{6}\right)-\left(\frac{7}{-7}\right)\right] \times 1997$
$=[(-2)-(-1)] \times 1997$
$=(-2+1) \times 1997$
$=(-1) \times 1997$
$=-1997$
(e) $(-7)^{3}+(-2)^{3}-[(-21)+35-\sqrt[3]{125} \times(-8)]$
$=-343+(-8)-[(-21)+35-5 \times(-8)]$
$=-343+(-8)-[(-21)+35-(-40)]$
$=-343+(-8)-[(-21)+35+40]$
$=-343+(-8)-(14+40)$
$=-343-8-54$
$=-(343+8+54)$
$=-405$
26. (a) $[109-(-19)] \div(-2)^{3} \times(-5)=80$
(b) $(13-9)^{2}-5^{2}-(28-31)^{3}=18$
(c) $\left[(-5) \times(-8)^{2}-(-2)^{3} \times 7\right] \div(-11)=24$
(d) $\{[(-23)-(-11)] \div 6-7 \div(-7)\} \times 1997=-1997$
(e) $(-7)^{3}+(-2)^{3}-[(-21)+35-\sqrt[3]{125} \times(-8)]=-405$
27. (a) $(-0.3)^{2} \times\left(\frac{-1.4}{0.07}\right)-0.78$

$$
\begin{aligned}
& =\left(-\frac{3}{10}\right)^{2} \times\left(\frac{-140}{7}\right)-0.78 \\
& =\left(\frac{9}{100}\right) \times(-20)-0.78 \\
& =-1.8-0.78 \\
& =-2.58
\end{aligned}
$$

(b) $(-0.4)^{3} \times\left(\frac{-3.3}{0.11}\right)+0.123$
$=\left(-\frac{4}{10}\right)^{3} \times(\underbrace{-3.3^{n}} 0)+0.123$
$=\left(-\frac{64}{1000}\right) \times\left(\frac{-330}{11}\right)+0.123$
$=\left(-\frac{64}{1000}\right) \times(-30)+0.123$
$=1.92+0.123$

$$
=2.043
$$

28. (a) $\frac{1 \frac{8}{13} \times \frac{13}{42}+5 \frac{1}{5} \div \frac{7}{45}}{\left(\frac{7}{9}+\frac{7}{18}\right) \div \frac{1}{18} \times \frac{1}{7}}=11 \frac{13}{42}$
(b) $\frac{\sqrt[3]{13}-\sqrt{7}}{\sqrt{48}-\sqrt[3]{101}}=-0.130$ (to 3 d.p.)
(c) $\frac{\sqrt[3]{42.7863} \times(41.567)^{2}}{94536.721}=0.064$ (to 3 d.p.)
(d) $\sqrt[3]{\frac{9206 \times(29.5)^{3}}{(11.86)^{2}}}=118.884$ (to 3 d.p.)
(e) $\sqrt{\frac{46.3^{2}+85.9^{2}-70.7^{2}}{2 \times 46.3 \times 85.9}}=0.754$ (to 3 d.p.)
(f) $\sqrt{\frac{18 \times(4.359)^{2}+10 \times(3.465)^{2}}{(4.359)^{3}+3 \times(3.465)^{3}}}=1.492$ (to 3 d.p.)
29. (a) $(16.245-5.001)^{3} \times \sqrt{122.05}$
$=15704.76 \ldots$
$=20000$ (to 1 s.f.)
(b) $\frac{6.01 \times 0.0312}{0.0622}$
$=3.01466 \ldots$
$=3$ (to 1 s.f.)
(c) $\frac{29.12 \times 5.167}{1.895}$
$=79.400 \ldots$
$=80$ (to 1 s.f.)
(d) $\frac{41.41}{10.02 \times 0.01865}$
$=221.5943448$
$=200$ (to 1 s.f.)
(e) $\frac{\pi\left(8.5^{2}-7.5^{2}\right) \times 26}{169.8}$
$=7.6967 \ldots$
$=8$ (to 1 s.f.)
(f) $\frac{\sqrt{24.997} \times 28.0349}{19.897}$
$=7.04458 \ldots$
$=7$ (to 1 s.f.)
(g) $\frac{2905 \times(0.512)^{3}}{0.004987}$
$=78183.77 \ldots$
$=80000$ (to 1 s.f.)
(h) $\frac{59.701+41.098}{\sqrt[3]{998.07}}$
$=10.08639309 \ldots$
$=10$ (to 1 s.f.)
(i) $\frac{4.311-2.9016}{\sqrt[3]{981} \times 0.0231}$
$=6.140437069 \ldots$
$=6(1 \mathrm{~s} . \mathrm{f}$.
(j) $\frac{(20.315)^{3}-\sqrt{82.0548}}{\sqrt[3]{85.002-21.997}}$
$=2104.695751 \ldots$
$=2000$ (to 1 s.f.)
30. (i) $\frac{12.01 \times 4.8}{2.99}$

$$
\begin{aligned}
& \approx \frac{12 \times 4.8}{3.0} \\
& =19.2 \\
& =20 \text { (to } 1 \text { s.f.) }
\end{aligned}
$$

(ii) $\frac{12.01 \times 0.048}{0.299}$

$$
\begin{aligned}
& \approx \frac{12 \times 4.8 \div 100}{3.0 \div 10} \\
& =20 \div 10 \\
& =2
\end{aligned}
$$

31. (a) (i) $24.988=25$ (to 2 s.f.)
(ii) $39.6817=40$ (to 2 s.f.)
(iii) $198.97=200$ (to 2 s.f.)
(b) $\frac{\sqrt{24.988} \times 39.6817}{198.97}$
$\approx \frac{\sqrt{25} \times 40}{200}$
$=\frac{5 \times 40}{200}$
$=1$ (to 1 s.f.)
32. (a) $\frac{17.47 \times 6.87}{5.61-3.52}$
$=57.425311$
$=57.425$ (to 5 s.f.)
(b) $\frac{1.743 \times 5.3 \times 2.9454}{(11.71)^{2}}$
$=0.198428362 \ldots$
$=0.19843$ (to 5 s.f.)
(c) $7.593-6.219 \times \frac{1.47}{(1.4987)^{3}}$

$$
\begin{aligned}
& =4.877225103 \ldots \\
& =4.8772 \text { (to } 5 \text { s.f.) }
\end{aligned}
$$

(d) $\frac{119.73-13.27 \times 4.711}{88.77 \div 66.158}$

$$
=42.64089168 \ldots
$$

$$
=42.641 \text { (to } 5 \text { s.f.) }
$$

(e) $\left(\frac{32.41-10.479}{7.218}\right) \times\left(\frac{4.7103 \times 21.483}{8.4691}\right)$

$$
=36.30344114 \ldots
$$

$$
=36.303 \text { (to } 5 \text { s.f.) }
$$

(f) $\frac{(0.629)^{2}-\sqrt{7.318}}{2.873}$

$$
=-0.803877207 \ldots
$$

$$
=-0.80388 \text { (to } 5 \text { s.f.) }
$$

(g) $\sqrt[3]{\frac{11.84 \times 0.871}{0.9542}}$

$$
=2.210939278 \ldots
$$

$$
=2.2109 \text { (to } 5 \text { s.f.) }
$$

(h) $\frac{7.295-\sqrt{7.295}}{(7.295)^{2}}+\frac{(6.98)^{3}-6.98}{\sqrt[3]{6.98}}$

$$
=0.086327152+174.2907574
$$

$$
=174.3770846 \ldots
$$

$$
=174.38 \text { (to } 5 \text { s.f.) }
$$

33. (a) (i) $271.569=270$ (to 2 s.f.)
(ii) $9.9068=10$ (to the nearest whole number)
(iii) $3.0198=3.0$ (to 1 d.p.)
(b) $\frac{271.569 \times(9.9068)^{2}}{(3.0198)^{3}}$
$\approx \frac{270 \times(10)^{2}}{(3.0)^{3}}$
$=\frac{270 \times 100}{27}$
$=1000$ (to 1 s.f.)
(c) $\frac{271.569 \times(9.9068)^{2}}{(3.0198)^{3}}$
$=967.8597774 \ldots$
$=970$ (to 2 s.f.)
(d) No, the answers are close but not the same.

The estimated value is 30 more than the actual value.
34. (a) Perimeter of the rectangular sheet of metal

$$
\begin{aligned}
& =2(9.96+5.08) \\
& =2(15.04) \\
& =30.08 \\
& =30 \mathrm{~m} \text { (to } 1 \text { s.f. })
\end{aligned}
$$

(b) Area of rectangular sheet of metal

$$
\begin{aligned}
& =9.96 \times 5.08 \\
& =50.5968 \\
& =50.6 \mathrm{~m}^{2}
\end{aligned}
$$

35. (a) Smallest possible number of customers $=250$
(b) Largest possible number of customers $=349$
36. Total number of students that the school can accommodate
$=33 \times 37$
$=1221$
$=1200$ (to 2 s.f.)
The school can accommodate approximately 1200 students.
37. Number of pens bought
$=815 \div 85$
$=9.588 \ldots$
$=9$ (to 1 s.f.)
The greatest number of pens that he can buy is 9 .
38. (i) Thickness of each piece of paper

$$
\begin{aligned}
& =\frac{60 \div 10}{500} \\
& =\frac{6}{500} \\
& =0.012 \\
& =0.01 \mathrm{~cm} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(ii) Thickness of a piece of paper
$=0.012 \mathrm{~cm}$
$=0.00012 \mathrm{~m}$
$=0.0001 \mathrm{~m}$ (to 1 s.f.)
39. (i) Length of the carpet
$=\frac{11.9089}{4.04}$
$=2.947747525 \ldots$
$=2.95 \mathrm{~m}$ (to 3 s.f.)
(ii) Perimeter of the carpet
$\approx 2(2.9477+4.04)$
$=2(6.9877)$
$=13.9754$
$=13.98 \mathrm{~m}$ (to 4 s.f.)
40. (i) $18905=19000$ (to 2 s.f.)
(ii) Cost of each ticket
$=\frac{7000000}{19000}$
$=\frac{7000}{19}$
≈ 368.4210526
$=$ PKR 368 (to the nearest Rupees)
41. (a) (i) Radius
$=497$
$=500 \mathrm{~mm}$ (to $2 \mathrm{~s} . \mathrm{f}$)
Circumference of circle
$=2 \pi(500)$
$=1000 \pi$
$=3141.59 \ldots$
$=3000 \mathrm{~mm}$ (to 1 s.f.)
(ii) Radius
$=5.12$
$=5.1 \mathrm{~m}$ (to $2 \mathrm{~s} . \mathrm{f}$.)
Circumference of circle
$=2 \pi(5.1)$
$=10.2 \pi$
$=32.044 \ldots$
$=30 \mathrm{~m}$ (to 1 s.f.)
(b) (i) Radius
$=10.09$
$=10 \mathrm{~m}$ (to 2 s.f.)
Area of circle
$=\pi(10)^{2}$
$=100 \pi$
$=314.159 \ldots$
$=300 \mathrm{~m}^{2}$ (to 1 s.f.)
(ii) Radius
$=98.4$
$=98 \mathrm{~mm}$ (to 2 s.f.)
Area of circle
$=\pi(98)^{2}$
$=9604 \pi$
$=30171.855 \ldots$
$=30000 \mathrm{~mm}^{2}$ (to 1 s.f.)
42. Total cost of 20-paisa coins
$=31 \times 0.2$
$=$ PKR 6.20
Total cost of 5-paisa coins
= PKR 7.35 - PKR 6.20
= PKR 1.15
Number of 5-paisa coins
$=\frac{1.15}{0.05}$
$=\frac{1.2^{2}}{0.05}$ (to 2 s.f.)
$=\frac{120}{5}$
$=24$
There are about 245 -paisa coins in the box.
43. Total amount that Lixin has to pay
$=18 \times(0.99 \div 3)+1.2 \times 1.5+2 \times 0.81+2.2 \times 3.4$
$=18 \times 0.33+1.2 \times 1.5+2 \times 0.8+2.2 \times 3.4$
$=5.94+1.8+1.6+7.48$
$=$ PKR 16.84
The total amount she has to pay, to the nearest Rupees, is PKR 17.
44. For option A,
$700 \mathrm{~m} l$ costs about PKR 4.00 .
For option B,
1400 ml costs PKR 8.90.
Thus $700 \mathrm{~m} l$ will cost about $(8.90 \div 2)=$ PKR 4.45
For option C,
$950 \mathrm{~m} l$ costs PKR 9.90 .
Thus $700 \mathrm{~m} l$ will cost about $(9.90 \div 950) \times 700$
\approx PKR 7.00
\therefore Option A is better value for money.

Advanced

45. (i) $a=k b$

When $b=15, a=75$,

$$
\begin{aligned}
75 & =k(15) \\
k & =\frac{75}{15} \\
& =5 \\
\therefore a & =5 b
\end{aligned}
$$

When $b=37.5$,

$$
\begin{aligned}
a & =5(37.5) \\
& =187.5
\end{aligned}
$$

(ii) When $a=195$,

$$
\begin{aligned}
195 & =5 b \\
b & =\frac{195}{5} \\
& =39
\end{aligned}
$$

46. $h=k l$

When $l=36, h=30$,
$30=k(36)$

$$
\begin{aligned}
k & =\frac{30}{36} \\
& =\frac{5}{6} \\
\therefore h & =\frac{5}{6} l
\end{aligned}
$$

When $h=15$,
$15=\frac{5}{6} l$

$$
\begin{aligned}
l & =\frac{6}{5} \times 15 \\
& =18
\end{aligned}
$$

When $l=72$,

$$
\begin{aligned}
h & =\frac{5}{6}(72) \\
& =60
\end{aligned}
$$

When $h=75$,
$75=\frac{5}{6} l$
$l=\frac{6}{5} \times 75$
$=90$

h	15	30	60	75
l	18	36	72	90

47. (i) $w=k t$

When $t=0.3, w=1.8$,

$$
\begin{aligned}
1.8 & =k(0.3) \\
k & =\frac{1.8}{0.3} \\
& =6
\end{aligned}
$$

$\therefore w=6 t$
(ii) When $t=2.5$,

$$
\begin{aligned}
w & =6(2.5) \\
& =15
\end{aligned}
$$

$\therefore 15 \mathrm{~g}$ of silver will be deposited.
(iii)

48. (i) $F=k m$

When $m=250, F=60$,

$$
\begin{aligned}
60 & =k(250) \\
k & =\frac{60}{250} \\
& =\frac{6}{25} \\
\therefore & F
\end{aligned}
$$

(ii) When $m=300$,

$$
\begin{aligned}
F & =\frac{6}{25}(300) \\
& =72
\end{aligned}
$$

\therefore The net force required is 72 newtons.
(iii) When $F=102$,

$$
\begin{aligned}
102 & =\frac{6}{25} m \\
m & =\frac{25}{6} \times 102 \\
& =425
\end{aligned}
$$

\therefore The mass of the box is 425 kg .
(iv)

49. (i) $C=a n+b$

When $n=200, C=55000$,
$55000=200 a+b-(1)$
When $n=500, C=62500$,
$62500=500 a+b-(2)$
(2) $-(1): 300 a=7500$

$$
\begin{aligned}
a & =\frac{7500}{300} \\
& =25
\end{aligned}
$$

Substitute $a=25$ into (1):

$$
\begin{array}{rlr}
200(25)+b & =55000 \\
5000+b & =55000 & \\
b & =55000-5000 \\
& =50000
\end{array}
$$

$\therefore a=25, b=50000$
(ii) $C=25 n+50000$

When $n=420$,

$$
\begin{aligned}
C & =25(420)+50000 \\
& =60500
\end{aligned}
$$

\therefore The total cost is PKR 60500 .
(iii) When $C=70000$,

$$
\begin{aligned}
70000 & =25 n+50000 \\
25 n & =20000 \\
n & =\frac{20000}{25} \\
& =800
\end{aligned}
$$

(iv)

No, C is not directly proportional to n since the graph of C against n does not pass through the origin.
50. (i) Annual premium payable

$$
=\text { PKR } 25+\frac{\text { PKR } 20000}{\text { PKR } 1000} \times \text { PKR } 2
$$

$$
\text { = PKR } 65
$$

(ii) Face value $=(\operatorname{PKR} 155-$ PKR 25 $) \times \frac{\mathrm{PKR} 1000}{\text { PKR } 2}$

$$
\text { = PKR } 65000
$$

(iii) $p=25+\frac{n}{1000} \times 2$

$$
\begin{aligned}
& =25+\frac{2 n}{1000} \\
& =25+\frac{n}{500}
\end{aligned}
$$

(iv)

No, p is not directly proportional to n since the graph of p against n does not pass through the origin.
51. (i) $n=k m^{3}$

When $m=1 \frac{1}{2}, n=27$,
$27=k\left(\frac{3}{2}\right)^{3}$
$=\frac{27}{8} k$
$k=8$
$\therefore n=8 m^{3}$
When $m=2$,

$$
\begin{aligned}
n & =8(2)^{3} \\
& =64
\end{aligned}
$$

(ii) When $n=125$,

$$
\begin{aligned}
125 & =8 m^{3} \\
m^{3} & =\frac{125}{8} \\
m & =\frac{5}{2} \\
& =2 \frac{1}{2}
\end{aligned}
$$

52. Number of workers to complete in 1 day $=6 \times 8$

$$
=48
$$

Number of workers to complete in 12 days $=\frac{48}{12}$
$=4$
53.

Number of girls

Number of
Number of minutes
8

120
120

$\therefore 36$ girls take 32 minutes to fold 120 paper cranes. Assume that all the girls have the same rate of folding
paper cranes.
54. $P=\frac{k}{V}$

When $V=2, P=500$,

$$
\begin{aligned}
500 & =\frac{k}{2} \\
k & =500 \times 2 \\
& =1000 \\
\therefore P & =\frac{1000}{V}
\end{aligned}
$$

When $V=5$,

$$
P=\frac{1000}{5}
$$

$$
=200
$$

\therefore The pressure of the gas is 200 pascals.
55. (a) $406 A 45$ when correct to 3 significant figures is 406000 , so $A<5$.
\therefore The maximum prime value of A is 3 .
(b) 398200 is the estimated value for

398150 to 398199 , if corrected to 4 significant figures;
398195 to 398204 , if corrected to 5 significant figures;
398200.1 to 398200.4 , if corrected to 6 significant figures.
$\therefore m=4,5$ or 6
56. 2000 is the estimated value for 1999 to 2004 , if corrected
to 1,2 and 3 significant figures.
\therefore The smallest number is 1999 and the largest number is 2004.
57. $\mathrm{Rp} 7872.5300=\mathrm{S} \$ 1$

Rp $8000 \approx S \$ 1$
Price of cup noodle in Rp
$=\operatorname{Rp} 27800$
$\approx \operatorname{Rp} 28000$
Price of cup noodle in $\mathrm{S} \$=\mathrm{S} \$ \frac{28000}{8000}$

$$
=\mathrm{S} \$ 3.50
$$

The cup noodle costs $\mathrm{S} \$ 3.50$.
58. $\frac{\sqrt{16500.07 \times 39.59-\left(119999.999+\frac{485200.023}{(2.6)^{2}}\right)}}{\sqrt[3]{1.02 \times(13.5874+19.0007)^{2}-99.998}}$
$\approx \frac{\sqrt{17000 \times 40-\left(120000+\frac{490000}{(2.6)^{2}}\right)}}{\sqrt[3]{1.0 \times(14+20)^{2}-100}}$
$=\frac{\sqrt{17000 \times 40-\left(120000+\frac{490000}{6.76}\right)}}{\sqrt[3]{989}}$
$\approx \frac{\sqrt{680000-\left(120000+\frac{490000}{7}\right)}}{\sqrt[3]{1000}}$
(Note: 6.76 and 989 are estimated so that the division and cube root can be carried out, without the use of calculator)
$=\frac{\sqrt{680000-190000}}{10}$
$=\frac{\sqrt{490000}}{10}$
$=\frac{700}{10}$
$=70$ (to 1 s.f.)

New Trend

59. Arranging in ascending order,
$0.85^{\frac{3}{2}}, \frac{\pi}{4}, \sqrt{0.64}, 0.801$
60. (a) $\frac{16.8^{5}}{3(7.1)-1.55} \approx 67760$
(b) $67760=67800$ (to 3 s.f.)
61. (a) $\frac{(0.98452)^{3} \times \sqrt{2525}}{102.016}$

$$
\begin{aligned}
& \approx \frac{(1.0)^{3} \times \sqrt{2500}}{100} \\
& =0.5 \text { (to } 1 \text { s.f.) }
\end{aligned}
$$

(b) $\frac{(0.98452)^{3} \times \sqrt{2525}}{102.016}$

$$
\begin{aligned}
& =0.470041311 \\
& =0.47 \text { (to } 2 \text { s.f.) }
\end{aligned}
$$

62. $\sqrt[3]{\frac{(1.92)^{2}}{(4.3)^{3}-\sqrt{4.788}}}$
$=0.362609371$
$=0.36261$ (to 5 s.f.)
63. (a) 8.5 kg
(b) Greatest possible mass of $1 \mathrm{~m}^{3}$ of wood

$$
\begin{aligned}
& =\frac{9.5}{2.5} \\
& =3.8 \mathrm{~kg}
\end{aligned}
$$

Chapter 2 Financial Transactions

Basic

1. (a) (i) Simple interest $=6 \%$ of PKR 700

$$
\begin{aligned}
& =\frac{6}{100} \times 700 \\
& =\text { PKR } 42
\end{aligned}
$$

Simple interest for 5 years
$=5 \times$ PKR $42=$ PKR 210
(ii) Total amount of money loaned after 5 years = PKR 700 + PKR 210 = PKR 910
(b) (i) Simple interest $=8 \%$ of PKR 360

$$
\begin{aligned}
& =\frac{8}{100} \times 360 \\
& =\text { PKR } 28.80
\end{aligned}
$$

(ii) Simple interest for 3.5 years $=3.5 \times \operatorname{PKR} 28.80$

$$
=\text { PKR } 100.80
$$

Total amount of money loaned after 3.5 years
= PKR 360 + PKR 100.80
$=$ PKR 460.80
(c) (i) Simple interest $=4 \frac{1}{4} \%$ of PKR 480

$$
\begin{aligned}
& =\frac{4 \frac{1}{4}}{100} \times 480 \\
& =\text { PKR } 20.40
\end{aligned}
$$

Convert 4 years and 8 months to years.
4 years and 8 months $=4+\frac{8}{12}$

$$
=4 \frac{2}{3} \text { years }
$$

Simple interest for $4 \frac{2}{3}$ years
$=4 \frac{2}{3} \times$ PKR 20.40
$=$ PKR 95.20
(ii) Total amount of money loaned after

5 years
= PKR 480 + PKR 95.20
$=$ PKR 575.20
(d) (i) Simple interest $=9 \frac{3}{8} \%$ of PKR 1600

$$
\begin{aligned}
& =\frac{9 \frac{3}{8}}{100} \times 1600 \\
& =\text { PKR } 150
\end{aligned}
$$

Convert 18 months to years.
18 months $=\frac{18}{12}$

$$
=1 \frac{1}{2} \text { years }
$$

Simple interest for $1 \frac{1}{2}$ years

$$
\begin{aligned}
& =1 \frac{1}{2} \times \text { PKR } 150 \\
& =\text { PKR } 225
\end{aligned}
$$

(ii) Total amount of money loaned after 18 months

$$
\begin{aligned}
& =\text { PKR } 1600+\text { PKR } 225 \\
& =\text { PKR } 1825
\end{aligned}
$$

2. Amount of interest given to Ahsan
= PKR 5355 - PKR 4500
$=$ PKR 855
Let T years denote the time taken for the investment to grow to PKR 5355.
$855=\frac{4500 \times 4 \frac{3}{4} \times T}{100}$
$855=213.75 \times T$
3. (a) $A=2500\left(1+\frac{3}{100}\right)^{2}$

$$
=\text { PKR } 2652.25
$$

$$
I=\operatorname{PKR} 2652.25-\text { PKR } 2500
$$

$$
=\text { PKR } 152.25
$$

(b) $A=2500\left(1+\frac{\frac{3}{12}}{100}\right)^{24}$

$$
\begin{aligned}
& =\text { PKR } 2654.39 \text { (to } 2 \text { d.p.) } \\
I & =\text { PKR } 2654.39-\text { PKR } 2500 \\
& =\text { PKR } 154.39 \text { (to } 2 \text { d.p.) }
\end{aligned}
$$

4. Let the initial invested amount be PKR P.

$$
\begin{aligned}
I & =\frac{P R T}{100} \\
25.20 & =\frac{P \times 4 \times \frac{9}{12}}{100} \\
25.20 & =0.03 P \\
P & =25.2 \div 0.03 \\
& =840
\end{aligned}
$$

For the new interest rate,
$44.80+25.20=\frac{840 \times x \times \frac{20}{12}}{100}$
$70=14 x$
$x=5$
5. $A=20000\left(1+\frac{\frac{3.2}{12}}{100}\right)^{48}$
$=$ PKR 22727.19 (to 2 d.p.)
6. $A=6050\left(1+\frac{\frac{4}{4}}{100}\right)^{8}$

$$
=\text { PKR } 6551 \text { (to the nearest dollar) }
$$

7. $28121.60=25000\left(1+\frac{r}{100}\right)^{3}$
$\left(1+\frac{r}{100}\right)^{3}=1.124864$

$$
\begin{aligned}
1+\frac{r}{100} & =\sqrt[3]{1.124864} \\
\frac{r}{100} & =\sqrt[3]{1.124864}-1 \\
r & =4
\end{aligned}
$$

8. $P+11798.38=P\left(1+\frac{\frac{6}{2}}{100}\right)^{6}$

$$
\begin{aligned}
11798.38 & =P(1.03)^{6}-P \\
& =P\left(1.03^{6}-1\right) \\
P & =\frac{11798.38}{1.03^{6}-1} \\
& =\text { PKR } 60800 \text { (to the nearest rupee) }
\end{aligned}
$$

9. (i) Deposit $=25 \%$ of PKR 1300

$$
\begin{aligned}
& =\frac{25}{100} \times \text { PKR } 1300 \\
& =\text { PKR } 325
\end{aligned}
$$

Remaining amount $=$ PKR $1300-$ PKR 325

$$
\text { = PKR } 975
$$

Amount of interest the man owes at the end of 1 year
$=$ PKR $975 \times \frac{18}{100}$
$=$ PKR 175.50
Amount of interest the man has to pay at the end of 2 years
$=$ PKR 175.50×2
= PKR 351
Total amount to be paid in monthly instalments
= PKR 975 + PKR 351
= PKR 1326
Monthly instalment
$=\frac{\text { PKR } 1326}{24}$
$=$ PKR 55.25
(ii) Total amount the man has to pay for the TV set
= PKR 325 + PKR 1326
= PKR 1651
(iii) Difference in the amount paid with hire
purchase
= PKR 1651 - PKR 1300
= PKR 351
11. (a) Number of packets $=\frac{24000}{4}$

$$
=6000
$$

Total selling price $=6000 \times$ PKR 1.20

$$
\text { = PKR } 7200
$$

(b) Costs of labour and materials $=$ PKR 0.17×24000

$$
\text { = PKR } 4080
$$

Total cost of production
$=$ cost of administration

+ cost of labour and materials
$=1545+4080$
= PKR 5625
Profit $=7200-5625$

$$
\text { = PKR } 1575
$$

Percentage profit made $=\frac{1575}{5625} \times 100 \%$

$$
=28 \%
$$

(c) Number of packets $=\frac{212000}{4}$

$$
=53000
$$

Total selling price $=53000 \times$ PKR 1.20

$$
\text { = PKR } 63600
$$

$132 \frac{1}{2} \%$ of the cost of production $=$ PKR 63600
Cost of production $=63600 \div 132 \frac{1}{2} \%$

$$
\begin{aligned}
& =63600 \div \frac{265}{2} \% \\
& =63600 \times \frac{2}{265} \times 100 \\
& =\text { PKR } 48000
\end{aligned}
$$

The cost of producing 212000 rubber pieces is PKR 48000.
12. (i) Selling price of the condominium
$=90 \%$ of PKR 950000
$=\frac{90}{100} \times 950000$
= PKR 855000
(ii) Amount Mei Shan received after paying the agent $=98 \%$ of PKR 855000
$=\frac{98}{100} \times 855000$
$=$ PKR 837900
(iii) Amount agent received from seller
= PKR 855000 - PKR 837900
= PKR 17100
Amount agent received from buyer
= 5\% of PKR 855000
$=\frac{5}{100} \times 855000$
= PKR 42750
Total amount received by the agent
$=42750+17100$
= PKR 59850
13. (i) Number of litres used $=\frac{\operatorname{PKR} 3600}{\operatorname{PKR} 2.00}=1800$ litres
(ii) Total distance travelled $=1800 \times 16$

$$
=28800 \mathrm{~km}
$$

(iii) Total cost in 2011
$=$ PKR $3600+$ PKR $2000+$ PKR $850+$ PKR 880
$=$ PKR 7330
(iv) Total cost in 2012

$$
\begin{aligned}
&= \text { PKR } 880+\left(\text { PKR } 3600 \times \frac{100+5}{100}\right) \\
&+\left(\text { PKR } 850 \times \frac{100+15}{100}\right)+\left(\operatorname{PKR} 2000 \times \frac{100-10}{100}\right) \\
&= \text { PKR } 880+\text { PKR } 3780+\text { PKR } 977.50+\text { PKR } 1800 \\
&= \text { PKR } 7437.50 \\
& \text { Increase }=\text { PKR } 7437.50-\text { PKR } 7330=\text { PKR } 107.50 \\
& \text { Percentage increase }= \frac{\text { PKR } 107.50}{\text { PKR } 7330} \times 100 \% \\
&= 1.5 \%(\text { to } 2 \text { s.f. })
\end{aligned}
$$

14. (i) Total cash price

$$
\begin{aligned}
= & \text { PKR } 580+\text { PKR } 380+\text { PKR } 140+\text { PKR } 480 \\
& + \text { PKR } 240 \\
= & \text { PKR } 1820
\end{aligned}
$$

(ii) (a) Deposit $=20 \%$ of PKR 1820

$$
\begin{aligned}
& =\frac{12}{100} \times \text { PKR } 1820 \\
& =\text { PKR } 364
\end{aligned}
$$

Remaining amount $=$ PKR $1820-\operatorname{PKR} 364$

$$
=\text { PKR } 1456
$$

Credit charge $=12 \%$ of PKR 1456

$$
\begin{aligned}
& =\frac{12}{100} \times \text { PKR } 1456 \\
& =\text { PKR } 174.72
\end{aligned}
$$

Total amount to be paid in instalments
= PKR 1456 + PKR 174.72
= PKR 1630.72
Monthly instalment
$=\frac{\text { PKR } 1630.72}{12}$
= PKR 135.893
$=$ PKR 135.89 (to the nearest paisa)
(b) Total hire purchase $=$ PKR $364+$ PKR 1630.72

$$
\text { = PKR } 1994.72
$$

(iii) Total cash price after reduction

$$
\begin{aligned}
= & \left(\text { PKR } 580 \times \frac{100-10}{100}\right)+\left(\text { PKR } 380 \times \frac{100-5}{100}\right) \\
& +\left(\text { PKR } 480 \times \frac{100-3}{100}\right)+\text { PKR } 140+\text { PKR } 240 \\
= & \text { PKR } 522+\text { PKR } 361+\text { PKR } 465.60+\text { PKR } 140 \\
& + \text { PKR } 240 \\
= & \text { PKR } 1728.60
\end{aligned}
$$

15. (i) Number of litres of petrol required to drive around France

$$
\begin{aligned}
& =\frac{1920}{12} \\
& =160 \text { litres }
\end{aligned}
$$

(ii) Total cost of the petrol used in Euros

$$
\begin{aligned}
& =€ 1.47 \times 160 \\
& =€ 235.20
\end{aligned}
$$

(iii) Total cost of the petrol in Singapore dollars

$$
\begin{aligned}
& =€ 235.20 \times \mathrm{S} \$ 1.5599 \\
& =\mathrm{S} \$ 366.888 \\
& =\mathrm{S} \$ 367 \text { (to the nearest dollar) }
\end{aligned}
$$

(iv) Cost of each adult ferry ticket in Singapore dollars

$$
\begin{aligned}
& =£ 100 \times \mathrm{S} \$ 1.9399 \\
& =\mathrm{S} \$ 193.99
\end{aligned}
$$

16. $9004.07=P\left(1+\frac{3}{100}\right)^{4}$

$$
\begin{aligned}
P & =\frac{9004.07}{(1.03)^{4}} \\
& =\text { PKR } 8000 \text { (to the nearest rupee) }
\end{aligned}
$$

17. Deposit $=20 \%$ of PKR 1299

$$
\begin{aligned}
& =\frac{20}{100} \times \text { PKR } 1299 \\
& =\text { PKR } 259.80
\end{aligned}
$$

Let PKR x be one monthly payment.

$$
\begin{aligned}
1348.80 & =259.80+18 x \\
18 x & =1089 \\
x & =60.5
\end{aligned}
$$

One monthly payment is PKR 60.50.
18. Extra charge for making monthly payments
$=8 \%$ of PKR 1280
= PKR 102.40
Monthly payment
$=\frac{\operatorname{PKR}(1280+102.40)}{12}$
$=$ PKR 115.20
19. If he changes in Singapore,

$$
\begin{aligned}
\mathrm{S} \$ 1 & =£ 0.51 \\
\mathrm{~S} \$ 2400 & =2400 \times 0.51 \\
& =£ 1224
\end{aligned}
$$

If he changes in London,
$\mathrm{S} \$ 2.02=£ 1$
$\mathrm{S} \$ 2400=\frac{2400}{2.02}$

$$
=£ 1188.1188 \text { (to } 4 \text { d.p.) }
$$

Difference in the amount exchanged
= 1224 - 1188.1188
$=£ 35.88$ (to the nearest pound)
20. (a) PKR $1=\mathrm{S} \$ 1.38$

PKR $500=\mathrm{S} \$(500 \times 1.38)$

$$
=\mathrm{S} \$ 690
$$

(b) $\mathrm{S} \$ 1.38=\mathrm{PKR} 1$

$$
\begin{aligned}
\mathrm{S} \$ 800 & =\frac{\mathrm{S} \$ 800}{\mathrm{~S} \$ 1.38} \times \text { PKR } 1 \\
& =\text { PKR } 579 \frac{49}{69}
\end{aligned}
$$

PKR $1.12=€ 1$
PKR $579 \frac{49}{69}=\frac{\text { US } \$ 579 \frac{49}{69}}{\text { US } \$ 1.12} \times € 1$
$=€ 518$ (to the nearest euro)
21. (a) $A=1668\left(1+\frac{2.6}{100}\right)^{3}$

$$
\begin{aligned}
& =\text { PKR } 1801.52 \text { (to 2 d.p.) } \\
I & =1801.52-1668 \\
& =\text { PKR } 133.52
\end{aligned}
$$

= PKR 133.52
(b) Amount to be paid in euros $=799+\left(\frac{0.8}{100} \times 799\right)$

$$
=€ 805.392
$$

$$
\begin{aligned}
€ 0.65 & =\mathrm{S} \$ 1 \\
€ 805.632 & =\mathrm{S} \$ \frac{805.632}{0.65} \\
& =\mathrm{S} \$ 1239.43 \text { (to the nearest cent) }
\end{aligned}
$$

Chapter 3 Expansion and Factorisation of Algebraic Expressions

Basic

1. (a) Since the common difference is $5, T_{n}=5 n+$?

The term before T_{1} is $c=T_{0}=12-5=7$.
\therefore General term of the sequence, $T_{n}=5 n+7$
(b) Since the common difference is $-6, T_{n}=-6 n+$?.

The term before T_{1} is $c=T_{0}=83+6=89$.
\therefore General term of the sequence, $T_{n}=-6 n+89$.
(c) Since the common difference is $7, T_{n}=7 n+$?.

The term before T_{1} is $c=T_{0}=2-7=-5$.
\therefore General term of the sequence, $T_{n}=7 n-5$.
(d) Since the common difference is $6, T_{n}=6 n+$?

The term before T_{1} is $c=T_{0}=7-6=1$.
\therefore General term of the sequence, $T_{n}=6 n+1$.
(e) Since the common difference is $-4, T_{n}=-4 n+$?.

The term before T_{1} is $c=T_{0}=39+4=43$.
\therefore General term of the sequence, $T_{n}=-4 n+43$.
(f) To find the formula, consider the following:
$1,2,4,8,16, \ldots$
as $2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4}, \ldots$
\therefore General term of the sequence, $T_{n}=2^{n-1}$, $n=1,2,3, \ldots$
(g) To find the formula, consider the following:

$$
2, \quad 6, \quad 18, \quad 54, \quad 162, .
$$

as $2 \times 3^{0}, 2 \times 3^{1}, 2 \times 3^{2}, 2 \times 3^{3}, 2 \times 3^{4}$,
\therefore General term of the sequence, $T_{n}=2 \times 3^{n-1}$,
$n=1,2,3, \ldots$
(h) To find the formula, consider the following:
$12, \quad 36, \quad 108, \quad 324, \quad 972, \ldots$
as $4 \times 3,4 \times 3^{2}, 4 \times 3^{3}, 4 \times 3^{4}, 4 \times 3^{5}, \ldots$
\therefore General term of the sequence, $T_{n}=4 \times 3^{n}$, $n=1,2,3, \ldots$
(i) To find the formula, consider the following:
$2000,1000,500,250,125, \ldots$
as $\frac{4000}{2}, \frac{4000}{2^{2}}, \frac{4000}{2^{3}}, \frac{4000}{2^{4}}, \frac{4000}{2^{5}}$
\therefore General term of the sequence, $T_{n}=\frac{4000}{2^{n}}$, $n=1,2,3, \ldots$
2. (i) The next two terms of the sequence are 96 and 192.
(ii) To find the formula, consider the following:

$$
3,3 \times 2,6 \times 2,12 \times 2,24 \times 2, \ldots
$$

$3 \times 2^{0}, 3 \times 2,3 \times 2^{2}, 3 \times 2^{3}, 3 \times 2^{4}, \ldots$
\therefore General term of the sequence, $T_{n}=3 \times 2^{n-1}$
(iii) Let $3 \times 2^{m-1}=1536$

$$
2^{m-1}=\frac{1536}{3}=512
$$

By trial and error, $2^{9}=512$
$\therefore m-1=9$

$$
m=9+1=10
$$

4. (i) E

D E
D E
D E
D E
D E
D E
D E
E
(ii)

Letter	Number of Letters
A	$2(1)-1=1$
B	$2(2)-1=3$
C	$2(3)-1=5$
D	$2(4)-1=7$
E	$2(5)-1=9$
\vdots	\vdots
$n^{\text {th }}$ letter	$T n$

(iii) For the letter J, 2(10) - $1=19$.
(iv) Since the common difference is $2, T_{n}=2 n+$?.

The term before T_{1} is $c=T_{0}=1-2=-1$.
\therefore General term of the sequence, $T_{n}=2 n-1$.
$2 n-1=29$
$2 n=29+1$
$2 n=30$
$n=15$
When $n=15$, it is the letter O .
5. (a) $(a+5)^{2}$
$=a^{2}+10 a+25$
(b) $(2 b+3)^{2}$
$=4 b^{2}+12 b+9$
(c) $(c+6 d)^{2}$
$=c^{2}+12 c d+36 d^{2}$
(d) $(7 e+4 f)^{2}$
$=49 e^{2}+56 e f+16 f^{2}$
6. (a) $(a-8)^{2}$
$=a^{2}-16 a+64$
(b) $(4 b-1)^{2}$
$=16 b^{2}-8 b+1$
(c) $(c-3 d)^{2}$
$=c^{2}-6 c d+9 d^{2}$
(d) $(9 e-2 f)^{2}$
$=81 e^{2}-36 e f+4 f^{2}$
7. (a) $(a+6)(a-6)$
$=a^{2}-36$
(b) $(4 b+3)(4 b-3)$
$=16 b^{2}-9$
(c) $(9+4 c)(9-4 c)$
$=81-16 c^{2}$
(d) $(5 d+e)(5 d-e)$
$=25 d^{2}-e^{2}$
8. (a) 904^{2}
$=(900+4)^{2}$
$=900^{2}+2(900)(4)+4^{2}$
$=810000+7200+16$
$=817216$
(b) 791^{2}
$=(800-9)^{2}$
$=800^{2}-2(800)(9)+9^{2}$
$=640000-14400+81$
$=625681$
(c) 603×597
$=(600+3)(600-3)$
$=600^{2}-3^{2}$
$=360000-9$
$=359991$
(d) 99×101

$$
\begin{aligned}
& =(100-1)(100+1) \\
& =100^{2}-1^{2} \\
& =10000-1 \\
& =9999
\end{aligned}
$$

9. $(a+b)^{2}=a^{2}+2 a b+b^{2}$

$$
\begin{aligned}
73 & =a^{2}+b^{2}+2(65) \\
& =a^{2}+b^{2}+130
\end{aligned}
$$

$a^{2}+b^{2}=73-130$

$$
=-57
$$

10. (a) $a^{2}+12 a+36$
$=(a+6)^{2}$
(b) $9 b^{2}+12 b+4$
$=(3 b+2)^{2}$
(c) $4 c^{2}+4 c d+d^{2}$
$=(2 c+d)^{2}$
(d) $16 e^{2}+40 e f+25 f^{2}$
$=(4 e+5 f)^{2}$
11. (a) $a^{2}-18 a+81$
$=(a-9)^{2}$
(b) $25 b^{2}-20 b+4$
$=(5 b-2)^{2}$
(c) $9 c^{2}-6 c d+d^{2}$
$=(3 c-d)^{2}$
(d) $49 e^{2}-28 e f+4 f^{2}$
$=(7 e-2 f)^{2}$
12. (a) $a^{2}-196$
$=a^{2}-14^{2}$
$=(a+14)(a-14)$
(b) $4 b^{2}-81$
$=(2 b)^{2}-9^{2}$
$=(2 b+9)(2 b-9)$
(c) $289-36 c^{2}$
$=17^{2}-(6 c)^{2}$
$=(17+6 c)(17-6 c)$
(d) $9 d^{2}-e^{2}$
$=(3 d)^{2}-e^{2}$
$=(3 d+e)(3 d-e)$

Intermediate

13. (i) The next two terms of the sequence are 642 and 621.
(ii) Since the common difference is -21 ,
$T_{n}=-21 n+$?.
The term before T_{1} is $c=T_{0}=747+21=768$.
\therefore General term of the sequence, $T_{n}=768-21 n$.
(iii) $768-21 r=390$

$$
\begin{aligned}
21 r & =768-390 \\
& =378 \\
r & =18
\end{aligned}
$$

14. (a) When $n=1,2(1)^{2}-3(1)+5=4$

When $n=2,2(2)^{2}-3(2)+5=7$
When $n=3,2(3)^{2}-3(3)+5=14$
When $n=4,2(4)^{2}-3(4)+5=25$
The first four terms of the sequence are $4,7,14$ and 25 .
(b) (i) Comparing the two sequences, the common difference between two sequences is -3 .
Since the formula for the sequence in part (a) is $2 n^{2}-3 n+5$, then the formula for the sequence is $2 n^{2}-3 n+5-3=2 n^{2}-3 n+2$.
(ii) When $n=385$,

$$
\begin{aligned}
& 2(385)^{2}-3(385)+2 \\
& =295297
\end{aligned}
$$

15. (i) $5^{\text {th }}$ line: $n=5,6 \times 5-10=20$
(ii) Note that the product is the value of n and the value of 1 more than n.
$\therefore a=29$
The value of b is an even number and it is the product of n and 2 .
$\therefore b=28 \times 2=56$
The value of c is $29 \times 28-56=756$.
(iii) When $n=50$,
$51 \times 50-50 \times 2=2450$
16. (i) $7^{\text {th }}$ line: $7^{3}-7=336=(7-1) \times 7 \times(7+1)$
(ii) 1320 is divisible by 10 . Thus the factors of 1320 are 10,11 and 12 .
$1320=(11-1) \times 11 \times(11+1)$
$\therefore n=11$
(iii) $19^{3}-19=(19-1) \times 19 \times(19+1)=6840$
17. (a)

Figure Number	Number of Dots	Number of Small Right-Angled Triangles
1	4	2
2	9	8
3	16	18
4	25	32
\vdots	\vdots	\vdots
10	121	200
\vdots	\vdots	\vdots
19	400	722
\vdots	\vdots	\vdots
n	x	y

(b) (i) $x=(n+1)^{2}$
(ii) $y=2 n^{2}$
18. (i)

Figure 5
(ii) When $n=5$,

Height of figure $=5$
Number of squares $=5+4+3+2+1$

$$
=\frac{5(5+1)}{2}=15
$$

When $n=6$,
Height of figure $=6$
Number of squares $=6+5+4+3+2+1$

$$
=\frac{6(6+1)}{2}=21
$$

When $n=n$,
Number of squares $=n+(n-1)+(n-2)$

$$
\begin{aligned}
& +\ldots+3+2+1 \\
= & \frac{n(n+1)}{2}
\end{aligned}
$$

19. (a) $\left(a+\frac{b}{3}\right)^{2}$

$$
=a^{2}+\frac{2 a b}{3}+\frac{b^{2}}{9}
$$

(b) $(0.5 c+d)^{2}$
$=0.25 c^{2}+c d+d^{2}$
(c) $(e f+2)^{2}$

$$
=e^{2} f^{2}+4 e f+4
$$

(d) $\left(g+\frac{2}{g}\right)^{2}$

$$
=g^{2}+4+\frac{4}{g^{2}}
$$

(e) $\left(h^{2}+3\right)^{2}$

$$
=h^{4}+6 h^{2}+9
$$

(f) $\left(k^{3}+4\right)^{2}$

$$
=k^{6}+8 k^{3}+16
$$

(g) $\left(\frac{2}{p}+\frac{3}{q}\right)^{2}$

$$
=\frac{4}{p^{2}}+\frac{12}{p q}+\frac{9}{q^{2}}
$$

(h) $\left(\frac{x}{y}+3 y\right)^{2}$

$$
=\frac{x^{2}}{y^{2}}+6 x+9 y^{2}
$$

20. (a) $\left(3 a-\frac{1}{4} b\right)^{2}$

$$
=9 a^{2}-\frac{3}{2} a b+\frac{1}{16} b^{2}
$$

(b) $(10 c-0.1 d)^{2}$

$$
=100 c^{2}-2 c d+0.01 d^{2}
$$

(c) $(2 e f-1)^{2}$

$$
=4 e^{2} f^{2}-4 e f+1
$$

(d) $\left(2 h-\frac{1}{h}\right)^{2}$

$$
=4 h^{2}-4+\frac{1}{h^{2}}
$$

(e) $\left(p^{4}-2\right)^{2}$

$$
=p^{8}-4 p^{4}+4
$$

(f) $\left(\frac{x}{y}-\frac{y}{x}\right)^{2}$

$$
=\frac{x^{2}}{y^{2}}-2+\frac{y^{2}}{x^{2}}
$$

21. (a) $\left(\frac{1}{2} a+b\right)\left(\frac{1}{2} a-b\right)$

$$
=\frac{1}{4} a^{2}-b^{2}
$$

(b) $(0.2 c+d)(d-0.2 c)$

$$
=(d+0.2 c)(d-0.2 c)
$$

$$
=d^{2}-0.04 c^{2}
$$

(c) $(3 e f+4)(3 e f-4)$

$$
=9 e^{2} f^{2}-16
$$

(d) $\left(\frac{g}{2}-\frac{h}{4}\right)\left(\frac{h}{4}+\frac{g}{2}\right)$

$$
\begin{aligned}
& =\left(\frac{g}{2}+\frac{h}{4}\right)\left(\frac{g}{2}-\frac{h}{4}\right) \\
& =\frac{g^{2}}{4}-\frac{h^{2}}{16}
\end{aligned}
$$

22. $x^{2}-y^{2}=6$
$(x+y)(x-y)=6$

$$
2(x+y)=6
$$

$$
x+y=3
$$

$\therefore(x+y)^{2}=9$
23. (i) $(x+y)^{2}=x^{2}+2 x y+y^{2}$

$$
\begin{aligned}
& =43+24 \\
& =67
\end{aligned}
$$

(ii) $(2 x-2 y)^{2}=4 x^{2}-8 x y+4 y^{2}$

$$
\begin{aligned}
& =4(43)-2(48) \\
& =76
\end{aligned}
$$

24. (i) $x^{2}-4 y^{2}=(x+2 y)(x-2 y)$

$$
\begin{aligned}
& =(-2)(18) \\
& =-36
\end{aligned}
$$

(ii) $x+2 y=-2-(1)$

$$
x-2 y=18-(2)
$$

$$
(1)+(2): 2 x=16
$$

$$
x=8
$$

(1) $-(2): 4 y=-20$

$$
y=-5
$$

$\therefore x^{2}+4 y^{2}=8^{2}+4(-5)^{2}$

$$
=164
$$

25. (i) $a^{2}-b^{2}=(a+b)(a-b)$
(ii) $2030^{2}-2029^{2}+2028^{2}-2027^{2}$

$$
\begin{aligned}
= & (2030+2029)(2030-2029) \\
& +(2028+2027)(2028-2027) \\
= & 2030+2029+2028+2027 \\
= & 8114
\end{aligned}
$$

26. (a) $4 a^{2}+32 a+64$
$=4\left(a^{2}+8 a+16\right)$
$=4(a+4)^{2}$
(b) $\frac{1}{4} b^{2}+4 b c+16 c^{2}$
$=\left(\frac{1}{2} b+4 c\right)^{2}$
(c) $\frac{1}{9} d^{2}+\frac{4}{15} d e+\frac{4}{25} e^{2}$

$$
=\left(\frac{1}{3} d+\frac{2}{5} e\right)^{2}
$$

(d) $f^{4}+8 f^{2}+16$

$$
=\left(f^{2}+4\right)^{2}
$$

27. (a) $3 a^{2}-36 a+108$

$$
\begin{aligned}
& =3\left(a^{2}-12 a+36\right) \\
& =3(a-6)^{2}
\end{aligned}
$$

(b) $64 b^{2}-4 b c+\frac{1}{16} c^{2}$
$=\left(8 b-\frac{1}{4} c\right)^{2}$
(c) $e^{2} f^{2}-10 e f+25$
$=(e f-5)^{2}$
(d) $\frac{1}{4} g^{2}-\frac{1}{4} g h+\frac{1}{16} h^{2}$
$=\left(\frac{1}{2} g-\frac{1}{4} h\right)^{2}$
28. (a) $\frac{1}{4} a^{2}-b^{2}$
$=\left(\frac{1}{2} a+b\right)\left(\frac{1}{2} a-b\right)$
(b) $4 c^{3}-49 c$
$=c\left(4 c^{2}-49\right)$
$=c(2 c+7)(2 c-7)$
(c) $81 e f^{2}-4 e g^{2}$
$=e\left(81 f^{2}-4 g^{2}\right)$
$=e(9 f+2 g)(9 f-2 g)$
(d) $18 h^{3}-8 h k^{2}$
$=2 h\left(9 h^{2}-4 k^{2}\right)$
$=2 h(3 h+2 k)(3 h-2 k)$
(e) $81 m^{5} n^{3}-121 m^{3} n^{5}$
$=m^{3} n^{3}\left(81 m^{2}-121 n^{2}\right)$
$=m^{3} n^{3}(9 m+11 n)(9 m-11 n)$
(f) $p^{4}-81 q^{4}$
$=\left(p^{2}+9 q^{2}\right)\left(p^{2}-9 q^{2}\right)$
$=\left(p^{2}+9 q^{2}\right)(p+3 q)(p-3 q)$
(g) $\left(t^{2}-1\right)^{2}-9$
$=\left(t^{2}-1+3\right)\left(t^{2}-1-3\right)$
$=\left(t^{2}+2\right)\left(t^{2}-4\right)$
$=\left(t^{2}+2\right)(t+2)(t-2)$
(h) $9-(a-b)^{2}$
$=(3+a-b)(3-a+b)$
(i) $(d+2 c)^{2}-c^{2}$
$=(d+2 c+c)(d+2 c-c)$
$=(d+3 c)(d+c)$
(j) $(e-3)^{2}-16 f^{2}$
$=(e-3+4 f)(e-3-4 f)$
(k) $(3 g-h)^{2}-g^{2}$
$=(3 g-h+g)(3 g-h-g)$
$=(4 g-h)(2 g-h)$
(l) $4 j^{2}-(k-2)^{2}$
$=(2 j+k-2)(2 j-k+2)$
(m) $9 m^{2}-(3 m-2 n)^{2}$
$=(3 m+3 n-2 n)(3 m-3 m+2 n)$
$=(6 m-2 n)(2 n)$
$=4 n(3 m-n)$
(n) $9 p^{2}-4(p-2 q)^{2}$

$$
\begin{aligned}
& =(3 p)^{2}-(2 p-4 q)^{2} \\
& =(3 p+2 p-4 q)(3 p-2 p+4 q) \\
& =(5 p-4 q)(p+4 q)
\end{aligned}
$$

(o) $(3 x-2 y)^{2}-(2 x-3 y)^{2}$

$$
\begin{aligned}
& =(3 x-2 y+2 x-3 y)(3 x-2 y-2 x+3 y) \\
& =(5 x-5 y)(x+y) \\
& =5(x+y)(x-y)
\end{aligned}
$$

29. (a) $41^{2}+738+81$

$$
\begin{aligned}
& =41^{2}+2(41)(9)+9^{2} \\
& =(41+9)^{2} \\
& =50^{2} \\
& =2500
\end{aligned}
$$

(b) $65^{2}+650+25$

$$
\begin{aligned}
& =65^{2}+2(65)(5)+5^{2} \\
& =(65+5)^{2} \\
& =70^{2} \\
& =4900
\end{aligned}
$$

(c) $92^{2}-368+4$

$$
\begin{aligned}
& =92^{2}-2(92)(2)+2^{2} \\
& =(92-2)^{2} \\
& =90^{2} \\
& =8100
\end{aligned}
$$

(d) $201^{2}-402+1$

$$
=201^{2}-2(201)(1)+1^{2}
$$

$$
=(201-1)^{2}
$$

$$
=200^{2}
$$

$$
=40000
$$

(e) $201^{2}-99^{2}$

$$
\begin{aligned}
& =(201+99)(201-99) \\
& =(300)(102) \\
& =30600
\end{aligned}
$$

(f) $1.013^{2}-0.013^{2}$

$$
=(1.013+0.013)(1.013-0.013)
$$

$$
=1.026
$$

Advanced

30. (a) $2 a^{2} b^{2}+4 a b-48=2\left(a^{2} b^{2}+2 a b-24\right)$

\times	$a b$	
$a b$	$a^{2} b^{2}$	$6 a b$
-4	$-4 a b$	-24

$\therefore 2 a^{2} b^{2}+4 a b-48=2(a b+6)(a b-4)$
(b) $15 c^{2} d^{2} e-77 c d e+10 e=e\left(15 c^{2} d^{2}-77 c d+10\right)$

\times	$15 c d$	
$c d$	$15 c^{2} d^{2}$	$-2 c d$
-5	$-75 c d$	10

$\therefore 15 c^{2} d^{2} e-77 c d e+10 e=e(15 c d-2)(c d-5)$
(c) $12 p^{2} q^{2} r-34 p q r-28 r=2 r\left(6 p^{2} q^{2}-17 p q-14\right)$

\times	$3 p q$	
$2 p q$	$6 p^{2} q^{2}$	$4 p q$
-7	$-21 p q$	-14

$\therefore 12 p^{2} q^{2} r-34 p q r-28 r=2 r(3 p q+2)(2 p q-7)$
(d) $3 x^{2}+7 x y+\frac{15}{4} y^{2}=\frac{1}{4}\left(12 x^{2}+28 x y+15 y^{2}\right)$

\times	$6 x$	$5 y$
$2 x$	$12 x^{2}$	$10 x y$
$3 y$	$18 x y$	$15 y^{2}$

$$
\therefore 3 x^{2}+7 x y+\frac{15}{4} y^{2}=\frac{1}{4}(6 x+5 y)(2 x+3 y)
$$

31. $\left(x^{2}-y\right)\left(x^{2}+y\right)\left(x^{4}+y^{2}\right)$

$$
\begin{aligned}
& =\left(x^{4}-y^{2}\right)\left(x^{4}+y^{2}\right) \\
& =x^{8}-y^{4}
\end{aligned}
$$

32. (a) $10^{2}-9^{2}+8^{2}-7^{2}+6^{2}-5^{2}+4^{2}-3^{2}+2^{2}-1^{2}$

$$
\begin{aligned}
= & (10+9)(10-9)+(8+7)(8-7)+(6+5) \\
& (6-5)+(4+3)(4-3)+(2+1)(2-1) \\
= & 19+15+11+7+3 \\
= & 55
\end{aligned}
$$

(b) $2008^{2}-2007^{2}+2006^{2}-2005^{2}+2004^{2}-2003^{2}$

$$
\begin{aligned}
= & (2008+2007)(2008-2007) \\
& +(2006+2005)(2006-2005) \\
& +(2004+2003)(2004-2003) \\
= & 2008+2007+2006+2005+2004+2003 \\
= & 12033
\end{aligned}
$$

33. (a) $a(b-c)+b c-a^{2}$

$$
\begin{aligned}
& =a b-a c+b c-a^{2} \\
& =a b+b c-a^{2}-a c \\
& =b(a+c)-a(a+c) \\
& =(b-a)(a+c)
\end{aligned}
$$

36. (a) $27 d^{3}-48 d$
$=3 d\left(9 d^{2}-16\right)$
$=3 d(3 d+4)(3 d-4)$
(b) $3 x^{2}-75 y^{2}$
$=3\left(x^{2}-25 y^{2}\right)$
$=3(x+5 y)(x-5 y)$
37. (i) $\frac{1}{3} x y+\frac{1}{4} x^{2} y-y^{2}-\frac{1}{12} x^{3}$
$=\frac{1}{12}\left[4 x y+3 x^{2} y-12 y^{2}-x^{3}\right]$
$=\frac{1}{12}\left[4 x y-12 y^{2}+3 x^{2} y-x^{3}\right]$
$=\frac{1}{12}\left[4 y(x-3 y)+x^{2}(3 y-x)\right]$
$=\frac{1}{12}\left[4 y(x-3 y)-x^{2}(x-3 y)\right]$
$=\frac{1}{12}\left(4 y-x^{2}\right)(x-3 y)$
(ii) Let $x=22$ and $y=9$:
$\frac{1}{3} \times 22 \times 9+\frac{1}{4} \times 484 \times 9-81-\frac{1}{12} \times 10648$
$=\frac{1}{12}\left[4(9)-22^{2}\right][22-3(9)]$
$=186 \frac{2}{3}$

New Trend

35. (a) (i) Next line is the $6^{\text {th }}$ line: $6^{2}-6=30$.
(ii) $8^{\text {th }}$ line: $8^{2}-8=56$
(iii) From the number pattern, we observe that

$$
\begin{aligned}
& 1^{2}-1=1(1-1) \\
& 2^{2}-2=2(2-1) \\
& 3^{2}-3=3(3-1) \\
& 4^{2}-4=4(4-1) \\
& 5^{2}-5=5(5-1)
\end{aligned}
$$

$$
n^{\text {th }} \text { line: } n^{2}-n=n(n-1)
$$

(b) $139^{2}-139=139(139-1)=19182$

Chapter 4 Graphs of Linear Equations and Simultaneous Linear Equations

Basic

1. (a) Take two points $(0,2)$ and $(7,2)$.

Vertical change (or rise) $=2-2=0$
Horizontal change (or run) $=7-0=7$

$$
\begin{aligned}
\therefore \text { Gradient } & =\frac{\text { rise }}{\text { run }} \\
& =\frac{0}{7}=0
\end{aligned}
$$

(b) Take two points $(7,0)$ and $(7,7)$.

Vertical change (or rise) $=7-0=7$
Horizontal change (or run) $=7-7=0$

$$
\begin{aligned}
\therefore \text { Gradient } & =\frac{\text { rise }}{\text { run }} \\
& =\frac{7}{0}=\text { undefined }
\end{aligned}
$$

(c) Take two points $(0,2)$ and $(4,6)$.

Vertical change (or rise) $=6-2=4$
Horizontal change (or run) $=4-0=4$
Since the line slopes upwards from the left to the right, its gradient is positive.

$$
\begin{aligned}
\therefore \text { Gradient } & =\frac{\text { rise }}{\text { run }} \\
& =\frac{4}{4}=1
\end{aligned}
$$

(d) Take two points $(4,6)$ and $(7,0)$.

Vertical change (or rise) $=6-0=6$
Horizontal change (or run) $=7-4=3$
Since the line slopes downwards from the left to the right, its gradient is negative.
\therefore Gradient $=\frac{\text { rise }}{\text { run }}$

$$
=-\frac{6}{3}=-2
$$

2. (a) Take two points $(-3,4)$ and $(4,4)$.

Vertical change (or rise) $=4-4=0$
Horizontal change $($ or run $)=4-(-3)=7$

$$
\begin{aligned}
\therefore \text { Gradient } & =\frac{\text { rise }}{\text { run }} \\
& =\frac{0}{7}=0
\end{aligned}
$$

(b) Take two points $(-3,-3)$ and $(4,-3)$.

Vertical change (or rise) $=-3-(-3)=0$
Horizontal change $($ or run $)=4-(-3)=7$

$$
\begin{aligned}
\therefore \text { Gradient } & =\frac{\text { rise }}{\text { run }} \\
& =\frac{0}{7}=0
\end{aligned}
$$

(c) Take two points $(-3,4)$ and $(-3,-3)$.

Vertical change (or rise) $=4-(-3)=7$
Horizontal change (or run) $=-3-(-3)=0$

$$
\begin{aligned}
\therefore \text { Gradient } & =\frac{\text { rise }}{\text { run }} \\
& =\frac{7}{0}=\text { undefined }
\end{aligned}
$$

(d) Take two points $(-4,4)$ and $(0,-3)$.

Vertical change (or rise) $=4-(-3)=7$
Horizontal change (or run) $=0-(-4)=4$
Since the line slopes downwards from the left to the right, its gradient is negative.

$$
\begin{aligned}
\therefore \text { Gradient } & =\frac{\text { rise }}{\text { run }} \\
& =-\frac{7}{4}
\end{aligned}
$$

(e) Take two points $(0,-3)$ and $(4,4)$.

Vertical change (or rise) $=4-(-3)=7$
Horizontal change (or run) $=4-0=4$
Since the line slopes upwards from the left to the right, its gradient is positive.
\therefore Gradient $=\frac{\text { rise }}{\text { run }}$

$$
=\frac{7}{4}
$$

3.

4.

5. (a) Line 1: $x=1$

Line 2: $x=-1.2$
Line 3: $y=2$
Line 4: $y=-2.6$
(b) Area enclosed $=(2.2)(4.6)$

$$
=10.12 \text { units }^{2}
$$

6. (a) $y=x+2$

x	0	1	2
y	2	3	4

$y=-2 x+2$

x	0	1	2
y	2	0	-2

From the graph,
$x=0$ and $y=2$
(b) $8 x+3 y=7$

x	0	1	2
y	2.3	-0.3	-3

$2 x+y=2$

x	0	1	2
y	2	0	-2

From the graph,
$x=\frac{1}{2}$ and $y=1$.
(c) $3 x+y=13$

x	0	2	4
y	13	7	1

$5 x-y=35$

x	0	5	10
y	-35	-10	15

From the graph,
$x=6$ and $y=-5$.
(d) $5 x-3 y=23$

x	0	2	4
y	-7.7	-4.3	-1

$x-7 y=11$

x	0	2	4
y	-1.6	-1.3	-1

From the graph,
$x=4$ and $y=-1$.
7. (a) $x+y=7-(1)$
$x-y=3-(2)$

$$
\begin{aligned}
(1)+(2): 2 x & =10 \\
x & =5
\end{aligned}
$$

Substitute $x=5$ into (1):
$5+y=7$

$$
y=2
$$

$\therefore x=5, y=2$
(b) $5 x-4 y=18-(1)$
$3 x+2 y=13-(2)$
(2) $\times 2: 6 x+4 y=26-(3)$
(1) $+(3): 11 x=44$

$$
x=4
$$

Substitute $x=4$ into (1):
$5(4)-4 y=18$

$$
20-4 y=18
$$

$$
4 y=2
$$

$$
y=\frac{1}{2}
$$

$\therefore x=4, y=\frac{1}{2}$
(c) $x+3 y=7-(1)$
$x+y=3-(2)$
(1) $-(2): 2 y=4$

$$
y=2
$$

Substitute $y=2$ into (2):

$$
\begin{aligned}
& x+2=3 \\
& \quad x=1 \\
& \therefore x=1, y=2
\end{aligned}
$$

(d) $3 x-5 y=19-(1)$
$5 x+2 y=11-(2)$

$$
\begin{gathered}
(1) \times 2: 6 x-10 y=38-(3) \\
(2) \times 5: 25 x+10 y=55-(4) \\
(3)+(4): 31 x=93 \\
x=3
\end{gathered}
$$

Substitute $x=3$ into (2):

$$
\begin{aligned}
5(3)+2 y & =11 \\
15+2 y & =11 \\
2 y & =-4 \\
y & =-2
\end{aligned}
$$

$\therefore x=3, y=-2$
(e) $3 x-4 y=30-(1)$
$2 x-7 y=33-(2)$
(1) $\times 2: 6 x-8 y=60 \quad-(3)$
(2) $\times 3: 6 x-21 y=99-(4)$
(3) $-(4): 13 y=-39$

$$
y=-3
$$

Substitute $y=-3$ into (2):

$$
\begin{aligned}
2 x-7(-3) & =33 \\
2 x+21 & =33 \\
2 x & =12 \\
x & =6 \\
\therefore x=6, y & =-3
\end{aligned}
$$

8. (a) $3 x+y=17-(1)$
$3 x-y=19-(2)$
From (1),

$$
y=17-3 x-(3)
$$

Substitute (3) into (2):
$3 x-(17-3 x)=19$

$$
3 x-17+3 x=19
$$

$$
6 x=36
$$

$$
x=6
$$

Substitute $x=6$ into (3):

$$
\begin{aligned}
y & =17-3(6) \\
& =-1 \\
\therefore & x=6, y=-1
\end{aligned}
$$

(b) $2 x-y=3-(1)$

$$
x+y=0-(2)
$$

From (1),

$$
y=2 x-3-(3)
$$

Substitute (3) into (2):

$$
\begin{aligned}
x+(2 x-3) & =0 \\
x+2 x-3 & =0 \\
3 x & =3 \\
x & =1
\end{aligned}
$$

Substitute $x=1$ into (3):

$$
\begin{aligned}
y & =2(1)-3 \\
& =2-3 \\
& =-1
\end{aligned}
$$

$$
\therefore x=1, y=-1
$$

(c) $3 x+3=6 y-(1)$

$$
x-y=1 \quad-(2)
$$

From (2),

$$
y=x-1-(3)
$$

Substitute (3) into (1):

$$
\begin{aligned}
3 x+3 & =6(x-1) \\
& =6 x-6 \\
3 x & =9 \\
x & =3
\end{aligned}
$$

Substitute $x=3$ into (3):
$y=3-1$
$=2$
$\therefore x=3, y=2$
(d) $6 x+2 y=-3-(1)$
$4 x-7 y=23-(2)$
From (1),
$y=\left(\frac{-3-6 x}{2}\right)-(3)$
Substitute (3) into (2):

$$
\begin{aligned}
4 x-7\left(\frac{-3-6 x}{2}\right) & =23 \\
8 x+21+42 x & =46 \\
50 x & =25 \\
x & =\frac{1}{2}
\end{aligned}
$$

Substitute $x=\frac{1}{2}$ into (3):

$$
\begin{aligned}
y & =\frac{-3-6\left(\frac{1}{2}\right)}{2} \\
& =-3
\end{aligned}
$$

$\therefore x=\frac{1}{2}, y=-3$
(e) $5 x+y=7 \quad-(1)$
$3 x-5 y=13-(2)$
From (1),
$y=7-5 x-(3)$
Substitute (3) into (2):
$3 x-5(7-5 x)=13$
$3 x-35+25 x=13$

$$
28 x=48
$$

$$
x=1 \frac{5}{7}
$$

Substitute $x=1 \frac{5}{7}$ into (3):
$y=7-5\left(1 \frac{5}{7}\right)$

$$
\begin{aligned}
& =-1 \frac{4}{7} \\
\therefore & x=1 \frac{5}{7}, y=-1 \frac{4}{7}
\end{aligned}
$$

9. (a) $3 x-y=-1-(1)$
$x+y=-3-(2)$
(1) $+(2): 4 x=-4$

$$
x=-1
$$

Substitute $x=-1$ into (2):

$$
\begin{aligned}
-1+y & =-3 \\
y & =-2
\end{aligned}
$$

$\therefore x=-1, y=-2$
(b) $2 x-3 y=13-(1)$
$3 x-12 y=42-(2)$
From (2),

$$
\begin{aligned}
x-4 y & =14 \\
x & =4 y+14 \quad-(3)
\end{aligned}
$$

Substitute (3) into (1):

$$
\begin{aligned}
2(4 y+14)-3 y & =13 \\
8 y+28-3 y & =13 \\
5 y & =-15 \\
y & =-3
\end{aligned}
$$

Substitute $y=-3$ into (3):

$$
\begin{aligned}
& x=4(-3)+14 \\
&=-12+14 \\
&=2 \\
& \therefore x=2, y=-3
\end{aligned}
$$

(c) $14 x+6 y=9 \quad-(1)$
$6 x-15 y=-2-(2)$
(1) $\times 5: 70 x+30 y=45-(3)$
(2) $\times 2: 12 x-30 y=-4-(4)$
(3) $+(4): 82 x=41$

$$
x=\frac{1}{2}
$$

Substitute $x=\frac{1}{2}$ into (2):

$$
\begin{aligned}
& 6\left(\frac{1}{2}\right)-15 y=-2 \\
& 3-15 y=-2 \\
& 15 y=5 \\
& y=\frac{1}{3} \\
& \therefore x=\frac{1}{2}, y=\frac{1}{3}
\end{aligned}
$$

(d) $8 x+y=24-(1)$
$4 x-y=6 \quad-(2)$
$(1)+(2): 12 x=30$

$$
x=2 \frac{1}{2}
$$

Substitute $x=2 \frac{1}{2}$ into (2):
$4\left(2 \frac{1}{2}\right)-y=6$

$$
\begin{aligned}
10-y & =6 \\
y & =4
\end{aligned}
$$

$\therefore x=2 \frac{1}{2}, y=4$
(e) $3 x+7 y=17-(1)$
$3 x-6 y=4 \quad-(2)$
(1) $-(2): 13 y=13$

$$
y=1
$$

Substitute $y=1$ into (1):

$$
\begin{aligned}
3 x+7(1) & =17 \\
3 x+7 & =17 \\
3 x & =10 \\
x & =3 \frac{1}{3}
\end{aligned}
$$

$\therefore x=3 \frac{1}{3}, y=1$
(f) $7 x-3 y=6-(1)$
$7 x-4 y=8-(2)$
(1) $-(2): y=-2$

Substitute $y=-2$ into (1):

$$
\begin{aligned}
7 x-3(-2) & =6 \\
7 x+6 & =6 \\
7 x & =0 \\
x & =0 \\
\therefore x=0, y & =-2
\end{aligned}
$$

Intermediate

10. For L_{1} :

Vertical change (or rise) $=6-2=4$
Horizontal change (or run) $=4-0=4$
Since the line slopes upwards from the left to the right, its gradient is positive.
$m=$ gradient of line

$$
\begin{aligned}
& =\frac{4}{4} \\
& =1 \\
c & =y \text {-intercept } \\
& =2
\end{aligned}
$$

For L_{2} :
Vertical change (or rise) $=6-(-2)=8$
Horizontal change (or run) $=4-0=4$
Since the line slopes upwards from the left to the right, its gradient is positive.
$m=$ gradient of line

$$
\begin{aligned}
& =\frac{8}{4} \\
& =2
\end{aligned}
$$

$c=y$-intercept

$$
=-2
$$

For L_{3} :
Vertical change (or rise) $=4-0=4$
Horizontal change (or run) $=4-0=4$

Since the line slopes downwards from the left to the right, its gradient is negative.
$m=$ gradient of line

$$
\begin{aligned}
& =-\frac{4}{4} \\
& =-1 \\
c & =y \text {-intercept } \\
& =4
\end{aligned}
$$

11. (a)

x	-4	0	2	4
$y=\frac{1}{2} x+1$	$y=\frac{1}{2}(-4)+1$ $=-1$	$y=\frac{1}{2}(0)+1$ $=1$	$y=\frac{1}{2}(2)+1$ $=2$	$y=\frac{1}{2}(4)+1$ $=3$

(b)

(c) From the graph, the point $(3,2.5)$ lies on the line but the point $\left(-1,-\frac{1}{2}\right)$ does not lie on the line.
(d) From the graph, the line cuts the x-axis at $x=-2$. The coordinates are $(-2,0)$.
(e) Vertical change (or rise) $=3-(-1)=4$

Horizontal change (or run) $=4-(-4)=8$
Since the line slopes upwards from the left to the right, its gradient is positive.
$m=$ gradient of line
$=\frac{4}{8}$
$=\frac{1}{2}$
12. The equation of a straight line is in the form of $y=m x+c$, where m is the gradient. So, to find the gradient of the lines, express the equation of the given lines to be in the form of the equation of a straight line.
(a) $y+x=5$

$$
y=-x+5
$$

From the equation, the value of the gradient m is -1 .
(b) $3 y+x=6$

$$
3 y=-x+6
$$

$$
\frac{3 y}{3}=\frac{-x+6}{3}
$$

$$
y=\frac{-x}{3}+2
$$

$$
=-\frac{1}{3} x+2
$$

From the equation, the value of m is $-\frac{1}{3}$.
(c)

$$
\begin{aligned}
2 y+3 x & =7 \\
2 y & =-3 x+7 \\
\frac{2 y}{2} & =\frac{-3 x+7}{2} \\
y & =\frac{-3 x}{2}+\frac{7}{2}
\end{aligned}
$$

From the equation, the value of m is $-\frac{3}{2}$.
(d)

$$
\begin{aligned}
2 x-5 y & =9 \\
2 x & =9+5 y \\
2 x-9 & =5 y \\
5 y & =2 x-9 \\
\frac{5 y}{5} & =\frac{2 x-9}{5} \\
y & =\frac{2 x}{5}-\frac{9}{5}
\end{aligned}
$$

From the equation, the value of m is $\frac{2}{5}$
(e)

$$
\begin{aligned}
4 x-6 y+1 & =0 \\
4 x+1 & =6 y \\
6 y & =4 x+1 \\
\frac{6 y}{6} & =\frac{4 x+1}{6} \\
y & =\frac{4 x}{6}-\frac{1}{6} \\
y & =\frac{2 x}{3}-\frac{1}{6}
\end{aligned}
$$

From the equation, the value of m is $\frac{2}{3}$.
(f) $\frac{1}{2} x-\frac{2}{3} y-5=0$

$$
\begin{aligned}
\frac{2}{3} y & =\frac{1}{2} x-5 \\
y & =\frac{3}{4} x-7 \frac{1}{2}
\end{aligned}
$$

From the equation, the value of m is $\frac{3}{4}$.
13. (a)

For $4 y+2 x=0$,
Vertical change $($ or rise $)=\frac{1}{2}-0$

$$
=\frac{1}{2}
$$

Horizontal change (or run) $=0-(-1)$

$$
=1
$$

Since the line slopes downwards from the left to the right, its gradient is negative.
$m=$ gradient of line

$$
\begin{aligned}
& =\frac{\frac{1}{2}}{1} \\
& =-\frac{1}{2}
\end{aligned}
$$

For $2 y+6 x=10$,
Vertical change (or rise) $=5-2$

$$
=3
$$

Horizontal change $($ or run $)=1-0$

$$
=1
$$

Since the line slopes downwards from the left to the right, its gradient is negative.
$m=$ gradient of line

$$
\begin{aligned}
& =-\frac{3}{1} \\
& =-3
\end{aligned}
$$

(b)

For $2 y=x+2$,
Vertical change $($ or rise $)=2 \frac{1}{2}-1 \frac{1}{2}$

$$
=-1
$$

Horizontal change $($ or run $)=3-1$

$$
=-2
$$

Since the line slopes upwards from the left to the right, its gradient is positive.
$m=$ gradient of line

$$
=\frac{1}{2}
$$

For $5 x-2 y=10$,
Vertical change (or rise) $=2 \frac{1}{2}-\left(-2 \frac{1}{2}\right)$

$$
=5
$$

Horizontal change (or run) $=3-1$

$$
=2
$$

Since the line slopes upwards from the left to the right, its gradient is positive.
$m=$ gradient of line

$$
\begin{aligned}
& =\frac{5}{2} \\
& =2 \frac{1}{2}
\end{aligned}
$$

(c)

For $7 x+y=12$,
Vertical change $($ or rise $)=12-5$

$$
=7
$$

Horizontal change $($ or run $)=1-0$

```
= 1
```

Since the line slopes downwards from the left to the right, its gradient is negative.
$m=$ gradient of line

$$
\begin{aligned}
& =\frac{7}{1} \\
& =-7
\end{aligned}
$$

For $5 y+6 x=2$,
Vertical change $($ or rise $)=-2-(-8)$

$$
=6
$$

Horizontal change $($ or run $)=7-2$

$$
=5
$$

Since the line slopes downwards from the left to the right, its gradient is negative.
$m=$ gradient of line

$$
=-\frac{6}{5}
$$

(d)

For $\frac{1}{2} x+\frac{1}{2} y=1$,
Vertical change (or rise) $=0-(-4)$

$$
=4
$$

Horizontal change $($ or run $)=6-2$

$$
=4
$$

Since the line slopes downwards from the left to the right, its gradient is negative.
$m=$ gradient of line

$$
=-\frac{4}{4}
$$

$$
=-1
$$

For $\frac{1}{5} x-\frac{1}{2} y=1 \frac{1}{10}$,
Vertical change (or rise) $=1-(-1)$

$$
=2
$$

Horizontal change (or run) $=8-3$

$$
=5
$$

Since the line slopes upwards from the left to the right, its gradient is positive.
$m=$ gradient of line

$$
=\frac{2}{5}
$$

14. (i) From the graph, the value of x can be obtained by taking the value of the y-intercept, i.e. when the number of units used is zero.
$\therefore x=14$
The value of y can be obtained by find the gradient of the line since the gradient, in this case, represents the cost for every unit of electricity used.
Vertical change $($ or rise $)=54-14=40$
Horizontal change (or run) $=400-0=400$
Since the line slopes upwards from the left to the right, its gradient is positive.
$y=m=$ gradient of line

$$
\begin{aligned}
& =\frac{40}{400} \\
& =\frac{1}{10}
\end{aligned}
$$

(ii) From the graph, the cost of using 300 units of electricity is PKR 44.
(iii) From the graph, the number of units of electricity used if the cost is PKR 32 is 180 .
15. (a)

(b) (i) Vertical change (or rise) $=6-3=3$

Horizontal change (or run) $=-2-(-4)=2$
Since the line slopes upwards from the left to the right, its gradient is positive.
Gradient of line $=\frac{3}{2}$
(ii) Vertical change (or rise) $=7-6=1$

Horizontal change (or run) $=1-(-2)=3$
Since the line slopes upwards from the left to the right, its gradient is positive.
Gradient of line $=\frac{1}{3}$
(iii) Vertical change (or rise) $=7-1=6$

Horizontal change $($ or run $)=4-1=3$
Since the line slopes downwards from the left to the right, its gradient is negative.

Gradient of line $=-\frac{6}{3}=-2$
(iv) Vertical change (or rise) $=3-1=2$

Horizontal change (or run) $=4-(-4)=8$
Since the line slopes downwards from the left to the right, its gradient is negative.

Gradient of line $=-\frac{2}{8}=-\frac{1}{4}$
(c) From the graph, the coordinates of the point is $(0,2)$.
16. (a)

(b) (i) Vertical change (or rise) $=1-(-2)=3$

Horizontal change (or run) $=-3-(-3)=0$
Gradient of line $=\frac{3}{0}=$ undefined
(ii) Vertical change (or rise) $=2-1=1$

Horizontal change (or run) $=2-(-3)=5$
Since the line slopes upwards from the left to the right, its gradient is positive.

Gradient of line $=\frac{1}{5}$
(iii) Vertical change (or rise) $=2-(-1)=3$

Horizontal change (or run) $=2-2=0$
Gradient of line $=\frac{3}{0}=$ undefined
(iv) Vertical change (or rise) $=-1-(-2)$

Horizontal change (or run) $=2-(-3)=5$
Since the line slopes upwards from the left to the right, its gradient is positive.

Gradient of line $=\frac{1}{5}$
(c) The quadrilateral $W X Y Z$ is a parallelogram.
17. (a) $4 x-6 y=12 \quad-(1)$
$2 x+4 y=-4.5-(2)$
(1) $\div 2: 2 x-3 y=6-(3)$
(2) $-(3): 7 y=-10.5$

$$
y=-1.5
$$

Substitute $y=-1.5$ into (3):

$$
\begin{aligned}
2 x-3(-1.5) & =6 \\
2 x+4.5 & =6 \\
2 x & =1.5 \\
x & =0.75 \\
\therefore x=0.75, y & =-1.5
\end{aligned}
$$

(b) $3 x-5 y=2 \quad-(1)$
$x-2 y=\frac{4}{15}-(2)$
(2) $\times 3: 3 x-6 y=\frac{4}{5}-(3)$
(1) $-(3): y=\frac{6}{5}$

$$
=1 \frac{1}{5}
$$

Substitute $y=1 \frac{1}{5}$ into (2):

$$
\begin{aligned}
x-2\left(1 \frac{1}{5}\right) & =\frac{4}{15} \\
x & =\frac{8}{3} \\
& =2 \frac{2}{3}
\end{aligned}
$$

$\therefore x=2 \frac{2}{3}, y=1 \frac{1}{5}$
(c) $5 x-8 y=23 \frac{1}{2}-(1)$
$4 x+y=22 \frac{1}{2}-(2)$
(2) $\times 8: 32 x+8 y=180-(3)$
(1) $+(3): 37 x=203 \frac{1}{2}$

$$
x=5 \frac{1}{2}
$$

Substitute $x=5 \frac{1}{2}$ into (2):

$$
4\left(5 \frac{1}{2}\right)+y=22 \frac{1}{2}
$$

$$
\begin{aligned}
22+y & =22 \frac{1}{2} \\
y & =\frac{1}{2} \\
\therefore x=5 \frac{1}{2}, y & =\frac{1}{2}
\end{aligned}
$$

(d) $5 x-3 y=1.4 \quad-(1)$
$2 x+5 y=14.2-(2)$
(1) $\times 2: 10 x-6 y=2.8-(3)$
(2) $\times 5: 10 x+25 y=71-(4)$
(4) $-(3): 31 y=68.2$

$$
y=2.2
$$

Substitute $y=2.2$ into (2):

$$
\begin{aligned}
2 x+5(2.2) & =14.2 \\
2 x+11 & =14.2 \\
2 x & =3.2 \\
x & =1.6
\end{aligned}
$$

$$
\therefore x=1.6, y=2.2
$$

18. (a) $15 x-7 y=14 \frac{1}{4}-(1)$

$$
5 x-y=3 \frac{3}{4}-(2)
$$

From (2),
$y=5 x-3 \frac{3}{4}-(3)$
Substitute (3) into (1):

$$
\begin{aligned}
15 x-7\left(5 x-3 \frac{3}{4}\right) & =14 \frac{1}{4} \\
15 x-35 x+\frac{105}{4} & =\frac{57}{4} \\
20 x & =12 \\
x & =\frac{3}{5}
\end{aligned}
$$

Substitute $x=\frac{3}{5}$ into (3):

$$
\begin{aligned}
& y=5\left(\frac{3}{5}\right)-3 \frac{3}{4} \\
&=3-3 \frac{3}{4} \\
&=-\frac{3}{4} \\
& \therefore x=\frac{3}{5}, y=-\frac{3}{4}
\end{aligned}
$$

(b) $3 x+1.4 y=0.1 \quad-(1)$

$$
x-3.6 y=10.2-(2)
$$

From (2),
$x=3.6 y+10.2-(3)$
Substitute (3) into (1):

$$
\begin{aligned}
3(3.6 y+10.2)+1.4 y & =0.1 \\
10.8 y+30.6+1.4 y & =0.1 \\
12.2 y & =-30.5 \\
y & =-2.5
\end{aligned}
$$

Substitute $y=-2.5$ into (3):

$$
\begin{aligned}
x & =3.6(-2.5)+10.2 \\
& =1.2 \\
\therefore & x=1.2, y=-2.5
\end{aligned}
$$

(c) $\frac{1}{2} x-\frac{1}{3} y-1=0-(1)$

$$
x+6 y+8=0-(2)
$$

From (2),
$x=-6 y-8-(3)$
Substitute (3) into (1):

$$
\begin{aligned}
\frac{1}{2}(-6 y-8)-\frac{1}{3} y-1 & =0 \\
-3 y-4-\frac{1}{3} y-1 & =0 \\
-\frac{10}{3} y & =5 \\
y & =-\frac{3}{2} \\
& =-1 \frac{1}{2}
\end{aligned}
$$

Substitute $y=-1 \frac{1}{2}$ into (3):

$$
\begin{align*}
x & =-6\left(-1 \frac{1}{2}\right)-8 \\
& =9-8 \\
& =1 \\
\therefore & x=1, y=-1 \frac{1}{2} \tag{1}
\end{align*}
$$

(d) $3 x-2 y=8$

$$
\frac{1}{8} x+\frac{1}{2} y=1.25-(2)
$$

From (2),

$$
\begin{aligned}
\frac{1}{2} y & =1.25-\frac{1}{8} x \\
y & =2.5-\frac{1}{4} x-(3)
\end{aligned}
$$

Substitute (3) into (1):

$$
\begin{aligned}
3 x-2\left(2.5-\frac{1}{4} x\right) & =8 \\
3 x-5+\frac{1}{2} x & =8 \\
\frac{7}{2} x & =13 \\
x & =\frac{26}{7} \\
& =3 \frac{5}{7}
\end{aligned}
$$

Substitute $x=3 \frac{5}{7}$ into (3):

$$
\begin{aligned}
y & =2 \frac{1}{2}-\frac{1}{4}\left(3 \frac{5}{7}\right) \\
& =1 \frac{4}{7} \\
\therefore & x=3 \frac{5}{7}, y=1 \frac{4}{7}
\end{aligned}
$$

19. (a) $3 x+2 y+7=0-(1)$
$5 x-2 y+1=0-(2)$
(1) $+(2): 8 x+8=0$

$$
\begin{aligned}
8 x & =-8 \\
x & =-1
\end{aligned}
$$

Substitute $x=-1$ into (1):

$$
\begin{aligned}
3(-1)+2 y+7 & =0 \\
-3+2 y+7 & =0 \\
2 y & =-4 \\
y & =-2
\end{aligned}
$$

$\therefore x=-1, y=-2$
(b) $2 y-7 x+69=0-(1)$
$4 x-3 y-45=0-(2)$
(1) $\times 3: 6 y-21 x+207=0-(3)$
(2) $\times 2: 8 x-6 y-90=0 \quad-(4)$
(3) + (4): $-13 x+117=0$

$$
\begin{aligned}
13 x & =117 \\
x & =9
\end{aligned}
$$

Substitute $x=9$ into (1):

$$
\begin{aligned}
2 y-7(9)+69 & =0 \\
2 y-63+69 & =0 \\
2 y & =-6 \\
y & =-3
\end{aligned}
$$

$\therefore x=9, y=-3$
(c) $0.5 x-0.2 y=2-(1)$
$2.5 x+0.6 y=2-(2)$
(1) $\times 3: 1.5 x-0.6 y=6-(3)$
(2) $+(3): 4 x=8$

$$
x=2
$$

Substitute $x=2$ into (1):

$$
\begin{aligned}
0.5(2)-0.2 y & =2 \\
1-0.2 y & =2 \\
0.2 y & =-1 \\
y & =-5
\end{aligned}
$$

$\therefore x=2, y=-5$
(d) $x+\frac{1}{2} y=9 \quad-(1)$
$3 x-2 y=13-(2)$
(1) $\times 4: 4 x+2 y=36-(3)$
(2) $+(3): 7 x=49$

$$
x=7
$$

Substitute $x=7$ into (1):
$7+\frac{1}{2} y=9$

$$
\frac{1}{2} y=2
$$

$$
y=4
$$

$\therefore x=7, y=4$
(e) $\frac{1}{3}(x+1)+y-8=0$

$$
\begin{equation*}
x+4=\frac{y+1}{3} \tag{1}
\end{equation*}
$$

From (1),

$$
\begin{aligned}
x+1+3 y-24 & =0 \\
x & =23-3 y-(3)
\end{aligned}
$$

Substitute (3) into (2):

$$
\begin{aligned}
23-3 y+4 & =\frac{y+1}{3} \\
27-3 y & =\frac{y+1}{3} \\
81-9 y & =y+1 \\
10 y & =80 \\
y & =8
\end{aligned}
$$

Substitute $y=8$ into (3):
$x=23-3(8)$
$=23-24$
$=-1$
$\therefore x=-1, y=8$
(f) $\frac{1}{5} x+\frac{3}{4} y=-1 \frac{1}{2}-(1)$
$\frac{5}{6} x-\frac{1}{8} y=13 \frac{1}{4}-(2)$
(1) $\times 20: 4 x+15 y=-30-(3)$
(2) $\times 24: 20 x-3 y=318-(4)$

From (4),
$3 y=20 x-318-(5)$
Substitute (5) into (3):
$4 x+5(20 x-318)=-30$
$4 x+100 x-1590=-30$

$$
104 x=1560
$$

$$
x=15
$$

Substitute $x=15$ into (5):

$$
\begin{aligned}
3 y & =20(15)-318 \\
& =-18 \\
y & =-6 \\
\therefore x & =15, y=-6
\end{aligned}
$$

(g) $\frac{1}{3} x-\frac{2}{3} y+5=0 \quad-(1)$
$\frac{1}{2} x+\frac{1}{3} y-\frac{1}{2}=0 \quad-(2)$
(1) $\times 3: x-2 y+15=0-(3)$
(2) $\times 6: 3 x+2 y-3=0-(4)$
(3) $+(4): 4 x+12=0$

$$
4 x=-12
$$

$$
x=-3
$$

Substitute $x=-3$ into (3):

$$
\begin{aligned}
-3-2 y+15 & =0 \\
2 y & =12 \\
y & =6
\end{aligned}
$$

$\therefore x=-3, y=6$
(h) $\frac{x+y}{13-7 y}=\frac{1}{3}-(1)$

$$
\frac{4 x-4 y-3}{6 y-3 x+2}=\frac{4}{3}-(2)
$$

From (1),

$$
\begin{gathered}
3 x+3 y=13-7 y \\
3 x+10 y=13-(3)
\end{gathered}
$$

From (2),

$$
\begin{aligned}
12 x-12 y-9 & =24 y-12 x+8 \\
24 x-36 y & =17-(4)
\end{aligned}
$$

From (3),
$3 x=13-10 y-(5)$
Substitute (5) into (4):

$$
\begin{aligned}
8(13-10 y)-36 y & =17 \\
104-80 y-36 y & =17 \\
116 y & =87 \\
y & =\frac{3}{4}
\end{aligned}
$$

Substitute $y=\frac{3}{4}$ into (5):

$$
\begin{aligned}
3 x & =13-10\left(\frac{3}{4}\right) \\
& =\frac{11}{2} \\
x & =\frac{11}{6} \\
& =1 \frac{5}{6} \\
\therefore x & =1 \frac{5}{6}, y=\frac{3}{4}
\end{aligned}
$$

20. (a) $4 x+4=5 x=60 y-100$

$$
\begin{aligned}
4 x+4 & =5 x \\
5 x & =60 y-100
\end{aligned}
$$

From (1),
$x=4$
Substitute $x=4$ into (2):

$$
\begin{aligned}
5(4) & =60 y-100 \\
20 & =60 y-100
\end{aligned}
$$

$$
60 y=120
$$

$$
y=2
$$

$\therefore x=4, y=2$
(b) $2 x-2+12 y=9=4 x-2 y$
$2 x-2+12 y=9-(1)$

$$
4 x-2 y=9-(2)
$$

From (1),
$2 x+12 y=11$

$$
\begin{equation*}
x=\frac{11-12 y}{2} \tag{3}
\end{equation*}
$$

Substitute (3) into (2):
$4\left(\frac{11-12 y}{2}\right)-2 y=9$

$$
\begin{aligned}
22-24 y-2 y & =9 \\
26 y & =13 \\
y & =\frac{1}{2}
\end{aligned}
$$

Substitute $y=\frac{1}{2}$ into (3):
$x=\frac{11-12\left(\frac{1}{2}\right)}{2}$
$=\frac{5}{2}$
$=2 \frac{1}{2}$
$\therefore x=2 \frac{1}{2}, y=\frac{1}{2}$
(c) $5 x+3 y=2 x+7 y=29$
$5 x+3 y=29-(1)$
$2 x+7 y=29-(2)$
(1) $\times 2: 10 x+6 y=58 \quad-(3)$
(2) $\times 5: 10 x+35 y=145-(4)$
(4) $-(3): 29 y=87$

$$
y=3
$$

Substitute $y=3$ into (2):

$$
\begin{aligned}
2 x+7(3) & =29 \\
2 x+21 & =29 \\
2 x & =8 \\
x & =4
\end{aligned}
$$

$\therefore x=4, y=3$
(d) $10 x-15 y=12 x-8 y=150$
$10 x-15 y=150-(1)$
$12 x-8 y=150-(2)$
(1) $\div 5: 2 x-3 y=30-(3)$
(2) $\div 2: 6 x-4 y=75-(4)$

From (3),
$2 x=3 y+30-(5)$
Substitute (5) into (4):

$$
\begin{aligned}
3(3 y+30)-4 y & =75 \\
9 y+90-4 y & =75 \\
5 y & =-15 \\
y & =-3
\end{aligned}
$$

Substitute $y=-3$ into (5):

$$
\begin{aligned}
2 x & =3(-3)+30 \\
& =-9+30 \\
& =21
\end{aligned}
$$

$x=\frac{21}{2}$

$$
=10 \frac{1}{2}
$$

$\therefore x=10 \frac{1}{2}, y=-3$
(e) $x+y+3=3 y-2=2 x+y$
$x+y+3=3 y-2-(1)$
$x+y+3=2 x+y-(2)$
From (2),
$x=3$
Substitute $x=3$ into (1):
$3+y+3=3 y-2$

$$
2 y=8
$$

$$
y=4
$$

$\therefore x=3, y=4$
(f) $5 x-8 y=3 y-x+8=2 x-y+1$
$5 x-8 y=3 y-x+8-(1)$
$5 x-8 y=2 x-y+1-(2)$
From (1),
$6 x-11 y=8-(3)$
From (2),
$3 x-7 y=1$

$$
3 x=7 y+1-(4)
$$

Substitute (4) into (3):

$$
\begin{aligned}
2(7 y+1)-11 y & =8 \\
14 y+2-11 y & =8 \\
3 y & =6 \\
y & =2
\end{aligned}
$$

Substitute $y=2$ into (4):

$$
\begin{aligned}
3 x & =7(2)+1 \\
& =15 \\
x & =5 \\
\therefore x & =5, y=2
\end{aligned}
$$

(g) $4 x+2 y=x-3 y+1=2 x+y+3$
$4 x+2 y=x-3 y+1-(1)$
$4 x+2 y=2 x+y+3-(2)$
From (1),
$3 x+5 y=1-(3)$
From (2),
$2 x+y=3$

$$
y=3-2 x-(4)
$$

Substitute (4) into (3):

$$
\begin{aligned}
3 x+5(3-2 x) & =1 \\
3 x+15-10 x & =1 \\
7 x & =14 \\
x & =2
\end{aligned}
$$

Substitute $x=2$ into (4):

$$
\begin{aligned}
y & =3-2(2) \\
& =3-4 \\
& =-1
\end{aligned}
$$

$\therefore x=2, y=-1$
(h) $3 x-4 y-7=y+10 x-10=4 x-7 y$
$3 x-4 y-7=y+10 x-10-(1)$
$3 x-4 y-7=4 x-7 y$
From (1),
$7 x+5 y=3-(3)$
From (2),

$$
\begin{aligned}
x-3 y & =-7 \\
x & =3 y-7-(4)
\end{aligned}
$$

Substitute (4) into (3):

$$
\begin{aligned}
7(3 y-7)+5 y & =3 \\
21 y-49+5 y & =3 \\
26 y & =52 \\
y & =2
\end{aligned}
$$

Substitute $y=2$ into (4):

$$
\begin{aligned}
x & =3(2)-7 \\
& =6-7 \\
& =-1 \\
\therefore x & =-1, y=2 \\
\text { 21. } 6 x-3 y & =4 \quad-(1) \\
y & =2 x+5-(2)
\end{aligned}
$$

Substitute (2) into (1):

$$
\begin{aligned}
6 x-3(2 x+5) & =4 \\
6 x-6 x-15 & =4 \\
-15 & =4(\text { N.A. })
\end{aligned}
$$

From (1),

$$
\begin{aligned}
3 y & =6 x-4 \\
y & =2 x-\frac{4}{3}
\end{aligned}
$$

Since the gradients of the lines are equal, the lines are parallel and have no solution.
22. $6 y+3 x=15$

$$
\begin{equation*}
y=-\frac{1}{2} x+\frac{5}{2}-(2) \tag{1}
\end{equation*}
$$

From (1),
$6 y=-3 x+15$

$$
y=-\frac{1}{2} x+\frac{5}{2}
$$

Since the lines are identical, they overlap each other and have an infinite number of solutions.
23. (a) $x+y+2=3 y+1=2 x$
$x+y+2=3 y+1-(1)$

$$
\begin{equation*}
3 y+1=2 x \tag{2}
\end{equation*}
$$

From (1),
$x=2 y-1-(3)$
Substitute (3) into (2):
$3 y+1=2(y-1)$

$$
=4 y-2
$$

$$
y=3
$$

\therefore Perimeter $=3[3(3)+1]$

$$
=30 \mathrm{~cm}
$$

(b) $x+5 y+9=2 x+3 y-3=x+y+1$
$x+5 y+9=2 x+3 y-3-(1)$
$x+5 y+9=x+y+1$
From (2),
$4 y=-8$
$y=-2$
Substitute $y=-2$ into (1):
$x+5(-2)+9=2 x+3(-2)-3$

$$
\begin{aligned}
x-1 & =2 x-9 \\
x & =8
\end{aligned}
$$

\therefore Perimeter $=3[8+(-2)+1]$

$$
=21 \mathrm{~cm}
$$

24. (a) $2 x+y+1=12 \quad$-(1)
$4 x+y+2=3 x+3 y-(2)$
From (1),
$y=11-2 x-(3)$
Substitute (3) into (2):

$$
\begin{aligned}
4 x+11-2 x+2 & =3 x+3(11-2 x) \\
2 x+13 & =3 x+33-6 x \\
& =33-3 x \\
5 x & =20 \\
x & =4
\end{aligned}
$$

Substitute $x=4$ into (3):

$$
\begin{aligned}
y & =11-2(4) \\
& =11-8 \\
& =3
\end{aligned}
$$

\therefore Perimeter $=2[3(4)+3(3)+12]$

$$
=66 \mathrm{~cm}
$$

$$
\text { Area }=12[3(4)+3(3)]
$$

$$
=252 \mathrm{~cm}^{2}
$$

(b) $3 x+y+6=4 x-y-(1)$
$5 x-2 y+1=6 x+y-(2)$
From (1),
$x=2 y+6-(3)$
Substitute (3) into (2):

$$
\begin{aligned}
5(2 y+6)-2 y+1 & =6(2 y+6)+y \\
10 y+30-2 y+1 & =12 y+36+y \\
8 y+31 & =13 y+36 \\
5 y & =-5 \\
y & =-1
\end{aligned}
$$

Substitute $x=10$ into (1):

$$
\begin{aligned}
0.3(10)+0.4 y & =7 \\
3+0.4 y & =7 \\
0.4 y & =4 \\
y & =10
\end{aligned}
$$

$\therefore p=10, q=10$
28. $3 x-y=7 \quad-(1)$
$2 x+5 y=-1-(2)$
From (1),
$y=3 x-7-(3)$
Substitute (3) into (2):

$$
\begin{aligned}
2 x+5(3 x-7) & =-1 \\
2 x+15 x-35 & =-1 \\
17 x & =34 \\
x & =2
\end{aligned}
$$

Substitute $x=2$ into (3):

$$
\begin{aligned}
y & =3(2)-7 \\
& =6-7 \\
& =-1
\end{aligned}
$$

\therefore Coordinates of point of intersection are $(2,-1)$.
29. $x^{2}+a x+b=0-(1)$

Substitute $x=3$ into (1):

$$
\begin{aligned}
3^{2}+a(3)+b & =0 \\
3 a+b & =-9-(2)
\end{aligned}
$$

Substitute $x=-4$ into (1):
$(-4)^{2}+a(-4)+b=0$

$$
4 a-b=16-(3)
$$

(2) $+(3): 7 a=7$

$$
a=1
$$

Substitute $a=1$ into (2):

$$
\begin{aligned}
3(1)+b & =-9 \\
b & =-9-3 \\
& =-12
\end{aligned}
$$

$\therefore a=1, b=-12$
30. $a x-b y=1 \quad-(1)$
$a y+b x=-7 \quad-(2)$
Substitute $x=-1, y=2$ into (1):

$$
\begin{aligned}
a(-1)-b(2) & =1 \\
-a-2 b & =1-(3)
\end{aligned}
$$

Substitute $x=-1, y=2$ into (2):

$$
\begin{aligned}
a(2)+b(-1) & =-7 \\
2 a-b & =-7 \\
b & =2 a+7 \quad-(4)
\end{aligned}
$$

Substitute (4) into (3):

$$
\begin{aligned}
-a-2(2 a+7) & =1 \\
-a-4 a-14 & =1 \\
5 a & =-15 \\
a & =-3
\end{aligned}
$$

Substitute $a=-3$ into (4):

$$
\begin{aligned}
b & =2(-3)+7 \\
& =1 \\
\therefore & a=-3, b=1
\end{aligned}
$$

31. Using the same method,
$4 x-3 y=48 x+8 y$

$$
\begin{aligned}
44 x & =-11 y \\
4 x & =-y
\end{aligned}
$$

\therefore This method cannot be used as we have one equation with two unknowns at the end.
32. Let Hussain's age be x years and his aunt's age be y years.

$$
\begin{aligned}
y & =4 x \\
y+8 & =\frac{5}{2}(x+8)-(1)
\end{aligned}
$$

Substitute (1) into (2):

$$
4 x+8=\frac{5}{2}(x+8)
$$

$$
8 x+16=5 x+40
$$

$$
3 x=24
$$

$$
x=8
$$

Substitute $x=8$ into (1):

$$
y=4(8)
$$

$$
=32
$$

\therefore His aunt's present age is 32 years.
33. (i) Let Jamil's age be x years and his mother's age be y years.

$$
\begin{aligned}
& x+y=61-(1) \\
& y-x=29-(2)
\end{aligned}
$$

$$
\begin{aligned}
(1)-(2): 2 x & =32 \\
x & =16
\end{aligned}
$$

\therefore Jamil's present age is 16 years.
(ii) Substitute $x=16$ into (2):

$$
\begin{aligned}
y-16 & =29 \\
y & =45 \\
y+5 & =45+5 \\
& =50
\end{aligned}
$$

\therefore Jamil's mother will be 50 years old.
34. Let the numbers be x and y.
$y+7=4 x-(1)$
$x+28=2 y-(2)$
From (1),
$y=4 x-7-(3)$
Substitute (3) into (2):

$$
\begin{aligned}
x+28 & =2(4 x-7) \\
& =8 x-14 \\
7 x & =42 \\
x & =6
\end{aligned}
$$

Substitute $x=6$ into (3):

$$
\begin{aligned}
y & =4(6)-7 \\
& =17
\end{aligned}
$$

\therefore The numbers are 17 and 6 .
35. Let the original fraction be $\frac{x}{y}$.
$\frac{x-1}{y-1}=\frac{3}{4}-(1)$
$\frac{x+1}{y+1}=\frac{4}{5}-(2)$
From (1),
$4 x-4=3 y-3$
$4 x-3 y=1-(3)$
From (2),

$$
\begin{aligned}
5 x+5 & =4 y+4 \\
4 y & =5 x+1 \\
y & =\frac{1}{4}(5 x+1)-(4)
\end{aligned}
$$

Substitute (4) into (3):

$$
\begin{aligned}
4 x-\frac{3}{4}(5 x+1) & =1 \\
16 x-15 x-3 & =4 \\
x & =7
\end{aligned}
$$

Substitute $x=7$ into (4):

$$
\begin{aligned}
y & =\frac{1}{4}(35+1) \\
& =9
\end{aligned}
$$

\therefore The fraction is $\frac{7}{9}$.
36. Let the fractions be represented by x and y.

$$
\begin{align*}
x+y & =3(y-x) \\
6 x-y & =\frac{3}{2} \tag{2}
\end{align*}
$$

From (2),
$y=6 x-\frac{3}{2}-(3)$
Substitute (3) into (1):

$$
\begin{aligned}
x+6 x-\frac{3}{2} & =3\left(6 x-\frac{3}{2}-x\right) \\
7 x-\frac{3}{2} & =15 x-\frac{9}{2} \\
8 x & =3 \\
x & =\frac{3}{8}
\end{aligned}
$$

Substitute $x=\frac{3}{8}$ into (3):

$$
\begin{aligned}
y & =6\left(\frac{3}{8}\right)-\frac{3}{2} \\
& =\frac{3}{4}
\end{aligned}
$$

\therefore The fractions are $\frac{3}{4}$ and $\frac{3}{8}$.
37. Let the price of a chicken be PKR x and that of a duck be PKR y.

$$
\begin{aligned}
5 x+5 y & =100-(1) \\
10 x+17 y & =287.5-(2)
\end{aligned}
$$

From (1),

$$
\begin{aligned}
x+y & =20 \\
y & =20-x-(3)
\end{aligned}
$$

Substitute (3) into (2):

$$
\begin{aligned}
10 x+17(20-x) & =287.5 \\
10 x+340-17 x & =287.5 \\
7 x & =52.5 \\
x & =7.5
\end{aligned}
$$

Substitute $x=7.5$ into (3):

$$
\begin{aligned}
& y=20-7.5 \\
& \quad=12.5 \\
& 3 x+2 y=3(7.5)+2(12.5) \\
& \quad=47.5
\end{aligned}
$$

\therefore He will receive PKR 47.50.
38. Let the number of chickens and goats be x and y respectively.

$$
x+y=45 \quad-(1)
$$

$$
2 x+4 y=150-(2)
$$

From (2),
$x+2 y=75-(3)$
(2) $-(1): y=30$

Substitute $y=30$ into (1):

$$
\begin{aligned}
x+30 & =45 \\
x & =15 \\
y-x & =30-15 \\
& =15
\end{aligned}
$$

\therefore There are 15 more goats than chickens.
39. Let the cost of 1 can of condensed milk and 1 jar of instant coffee be PKR x and PKR y respectively.
$5 x+3 y=27 \quad-(1)$
$12 x+5 y=49.4-(2)$
From (1),
$3 y=27-5 x$
$y=9-\frac{5}{3} x-(3)$

Substitute (3) into (2):
$12 x+5\left(9-\frac{5}{3} x\right)=49.4$

$$
\begin{aligned}
12 x+45-\frac{25}{3} x & =49.4 \\
\frac{11}{3} x & =4.4 \\
x & =1.2
\end{aligned}
$$

Substitute $x=1.2$ into (3):

$$
\begin{aligned}
y & =9-\frac{5}{3}(1.2) \\
& =7
\end{aligned}
$$

$7 x+2 y=7(1.2)+2(7)$

$$
=22.4
$$

\therefore The total cost is PKR 22.40.
40. Let the cost of 1 kiwi fruit and 1 pear be PKR x and PKR y respectively.
$8 x+7 y=4.1-(1)$
$4 x+9 y=3.7-(2)$
(2) $\times 2: 8 x+18 y=7.4-(3)$
(3) $-(1): 11 y=3.3$

$$
y=0.3
$$

Substitute $y=0.3$ into (1):

$$
\begin{aligned}
8 x+7(0.3) & =4.1 \\
8 x & =2.0 \\
x & =0.25 \\
2 x+2 y & =2(0.25)+2(0.3) \\
& =1.1
\end{aligned}
$$

\therefore The cost is PKR 1.10.
41. Let the number of research staff and laboratory assistants be x and y respectively.

$$
\begin{equation*}
x+y=540 \tag{1}
\end{equation*}
$$

$240 x+200 y=120000-(2)$
From (2),
$6 x+5 y=3000-(3)$
(1) $\times 5: 5 x+5 y=2700-(4)$
(3) - (4): $x=300$

Substitute $x=300$ into (1):
$300+y=540$

$$
y=240
$$

\therefore The facility employs 300 research staff and 240 laboratory assistants.
42. Let the time taken to travel at $90 \mathrm{~km} / \mathrm{h}$ and $80 \mathrm{~km} / \mathrm{h}$ be x hours and y hours respectively.

$$
\begin{aligned}
x+y & =8 \quad-(1) \\
90 x+80 y & =690
\end{aligned}
$$

From (2),
$9 x+8 y=69-(3)$
(1) $\times 9: 9 x+9 y=72-(4)$
(4) $-(3): y=3$

$$
\begin{aligned}
80 y & =80(3) \\
& =240
\end{aligned}
$$

\therefore The distance he covered was 240 km .

Advanced

43. (a) $\frac{2}{3} x-\frac{3}{5} y-4=\frac{1}{20} x-y+\frac{17}{30}=2 x-y-18 \frac{14}{15}$

$$
\begin{align*}
\frac{2}{3} x-\frac{3}{5} y-4 & =\frac{1}{20} x-y+\frac{17}{30} \\
\frac{1}{20} x-y+\frac{17}{30} & =2 x-y-18 \frac{14}{15} \tag{2}
\end{align*}
$$

From (1),

$$
\begin{aligned}
40 x-36 y-240 & =3 x-60 y+34 \\
37 x+24 y & =274-(3)
\end{aligned}
$$

From (2),
$3 x-60 y+34=120 x-60 y-1136$

$$
\begin{aligned}
117 x & =1170 \\
x & =10
\end{aligned}
$$

Substitute $x=10$ into (3):

$$
\begin{aligned}
37(10)+24 y & =274 \\
24 y & =-96 \\
y & =-4
\end{aligned}
$$

$\therefore x=10, y=-4$
(b) $\frac{2}{7} x+\frac{3}{4} y-4=\frac{3}{5} x-\frac{2}{7} y-44=\frac{7}{15} x+y-3 \frac{1}{3}$
$\frac{2}{7} x+\frac{3}{4} y-4=\frac{3}{5} x-\frac{2}{7} y-44-(1)$
$\frac{3}{5} x-\frac{2}{7} y-44=\frac{7}{15} x+y-3 \frac{1}{3}-(2)$
From (1),
$40 x+105 y-560=84 x-40 y-6160$

$$
44 x-145 y=5600-(3)
$$

From (2),
$63 x-30 y-4620=49 x+105 y-350$

$$
\begin{aligned}
14 x & =135 y+4270 \\
x & =\frac{135}{14} y+305-(4)
\end{aligned}
$$

Substitute (4) into (3):

$$
\begin{aligned}
44\left(\frac{135}{14} y+305\right)-145 y & =5600 \\
\frac{2970}{7} y+13420-145 y & =5600 \\
\frac{1955}{7} y & =-7820 \\
y & =-28
\end{aligned}
$$

Substitute $y=-28$ into (4):

$$
\begin{aligned}
x & =\frac{135}{14}(-28)+305 \\
& =35
\end{aligned}
$$

$$
\therefore x=35, y=-28
$$

44. Let the number be represented by $10 x+y$.

$$
\begin{align*}
10 x+y & =4(x+y)-(1) \\
(10 y+x)-(10 x+y) & =27 \tag{2}
\end{align*}
$$

From (1),

$$
\begin{aligned}
10 x+y & =4 x+4 y \\
6 x & =3 y \\
y & =2 x-(3)
\end{aligned}
$$

From (2),
$9 y-9 x=27$

$$
y-x=3-(4)
$$

Substitute (3) into (4):

$$
\begin{aligned}
2 x-x & =3 \\
x & =3
\end{aligned}
$$

Substitute $x=3$ into (3):

$$
\begin{aligned}
y & =2(3) \\
& =6
\end{aligned}
$$

\therefore The original number is 36 .
45. Let the digit in the tens place be x and the digit in the ones place be y.

$$
x=\frac{1}{2} y-(1)
$$

$(10 y+x)-(10 x+y)=36 \quad-(2)$
From (2),

$$
\begin{aligned}
9 y-9 x & =36 \\
y-x & =4-(3)
\end{aligned}
$$

Substitute (1) into (3):
$y-\frac{1}{2} y=4$

$$
\begin{aligned}
\frac{1}{2} y & =4 \\
y & =8
\end{aligned}
$$

Substitute $y=8$ into (1):

$$
\begin{aligned}
x & =\frac{1}{2}(8) \\
& =4
\end{aligned}
$$

\therefore The original number is 48 .
46. Let the larger number be x and the smaller number be y.

$$
\begin{aligned}
x+y & =55 \quad-(1) \\
x & =2 y+7-(2)
\end{aligned}
$$

Substitute (2) into (1):

$$
\begin{aligned}
2 y+7+y & =55 \\
3 y & =48 \\
y & =16
\end{aligned}
$$

Substitute $y=16$ into (2):

$$
\begin{aligned}
x & =2(16)+7 \\
& =39
\end{aligned}
$$

Difference in the reciprocals $=\frac{1}{16}-\frac{1}{39}$

$$
=\frac{23}{624}
$$

47. Let the walking speed of Ahsan and Maaz be $x \mathrm{~m} / \mathrm{s}$ and y m / s respectively.
$8 x+8 y=64 \quad-(1)$
$32 x-64=32 y-(2)$
From (1),
$x+y=8-(3)$
From (2),
$32 x-32 y=64$

$$
x-y=2-(4)
$$

(3) $+(4): 2 x=10$

$$
x=5
$$

Substitute $x=5$ into (4):

$$
\begin{aligned}
5-y & =2 \\
y & =3
\end{aligned}
$$

\therefore Ahsan's walking speed is $5 \mathrm{~m} / \mathrm{s}$ and Maaz's walking speed is $3 \mathrm{~m} / \mathrm{s}$.
The assumption is that when they are walking in the same direction, Ahsan starts off 64 m behind Maaz.

New Trend

48. $3 x=y+1-(1)$
$y-x=3$
From (1),
$y=3 x-1-(3)$
Substitute (3) into (2):

$$
\begin{aligned}
3 x-1-x & =3 \\
2 x & =4 \\
x & =2
\end{aligned}
$$

Substitute $x=2$ into (3):
$y=3(2)-1$
$=5$
$\therefore x=2, y=5$
49. (a) Let the speed of the faster ship and slower ship be $x \mathrm{~km} / \mathrm{h}$ and $y \mathrm{~km} / \mathrm{h}$ respectively.

$$
x=y+8-(1)
$$

$60 x+60 y=4320-(2)$
From (2),
$x+y=72-(3)$
Substitute (1) into (3):

$$
\begin{aligned}
y+8+y & =72 \\
2 y & =64 \\
y & =32
\end{aligned}
$$

Substitute $y=32$ into (1):

$$
\begin{aligned}
x & =32+8 \\
& =40
\end{aligned}
$$

\therefore The speeds of the faster ship and slower ship are $40 \mathrm{~km} / \mathrm{h}$ and $32 \mathrm{~km} / \mathrm{h}$ respectively.
(b) $\frac{1780}{32}-\frac{1780}{40}$

$$
=55.625-44.5
$$

$$
=11.125 \mathrm{~h}
$$

$=11 \mathrm{~h} 8 \mathrm{~min}$ (nearest min)
50. At x-axis, $y=0$
$3 x=30$
$x=10$
At y-axis, $x=0$
$-5 y=30$

$$
y=-6
$$

\therefore The coordinates of P are $(10,0)$ and of Q are $(0,-6)$.
51. (a) $4 x-6=5 y-7$ (isos. trapezium)

$$
\begin{align*}
4 x-5 y=-1 & -(1) \tag{1}\\
(4 x-6)+(5 x+6 y+33) & =180 \text { (int. } \angle \mathrm{s}) \\
9 x+6 y & =153 \\
3 x+2 y & =51-(2)
\end{align*}
$$

(b) $(1) \times 3: 12 x-15 y=-3 \quad$-(3)
(2) $\times 4: 12 x+8 y=204$
(4) $-(3): 23 y=207$

$$
y=9
$$

$\hat{B}=\hat{C}$
$=[5(9)-7]^{\circ}$
$=38^{\circ}$
$\widehat{A}=180^{\circ}-\hat{B}$
$=180^{\circ}-38^{\circ}$

$$
=142^{\circ}
$$

$\therefore \hat{A}=142^{\circ}$ and $\hat{B}=38^{\circ}$
52. (a) $4 x-2 y-5=0$

$$
\begin{aligned}
2 y & =4 x-5 \\
y & =2 x-2 \frac{1}{2}
\end{aligned}
$$

(i) Gradient of line $l=2$
(ii) y-intercept of line $l=-2 \frac{1}{2}$
(b) $2 x+3 y=-5-(1)$
$4 x-2 y=5 \quad-(2)$
(1) $\times 2: 4 x+6 y=-10-(3)$
(3) $-(2): 8 y=-15$

$$
y=-1 \frac{7}{8}
$$

Substitute $y=-1 \frac{7}{8}$ into (1):

$$
\begin{aligned}
2 x+3\left(-1 \frac{7}{8}\right) & =-5 \\
2 x-5 \frac{5}{8} & =-5 \\
2 x & =\frac{5}{8} \\
x & =\frac{5}{16}
\end{aligned}
$$

\therefore The coordinates of C are $\left(\frac{5}{16},-1 \frac{7}{8}\right)$.
53. (a) $y=7-2 x-(1)$

$$
y=x+10-(2)
$$

Substitute $x=-9$ into (1):

$$
\begin{aligned}
y & =7-2(-9) \\
& =7+18 \\
& =25
\end{aligned}
$$

Substitute $x=-9$ into (2):

$$
\begin{aligned}
y & =-9+10 \\
& =1
\end{aligned}
$$

\therefore The coordinates of A are $(-9,25)$ and of B are $(-9,1)$.
(b) $y=7-2 x$

From the equation, gradient of the line $=-2$.
(c) $(0, k)$ lies on the perpendicular bisector of $A B$.

$$
\begin{aligned}
\therefore k & =\frac{1+25}{2} \\
& =13
\end{aligned}
$$

Chapter 5 Indices and Standard Form

Basic

1. (a) $a^{4} \div a^{-2} \times a^{7}$
$=a^{4-(-2)+7}$
$=a^{13}$
(b) $2 b^{7} \times 4 b^{-3}$

$$
\begin{aligned}
& =8 b^{7+(-3)} \\
& =8 b^{4}
\end{aligned}
$$

(c) $c^{-2} \times\left(c^{\frac{1}{2}}\right)^{6} \times c^{-1}$

$$
=c^{-2} \times c^{3} \times c^{-1}
$$

$$
=c^{-2+3+(-1)}
$$

$$
=c^{0}
$$

$$
=1
$$

(d) $\sqrt[3]{d^{2}} \times \sqrt{d^{3}} \div d^{2}$

$$
\begin{aligned}
& =d^{\frac{2}{3}} \times d^{\frac{3}{2}} \div d^{2} \\
& =d^{\frac{2}{3}+\frac{3}{2}-2} \\
& =d^{\frac{1}{6}} \\
& \frac{e^{-5} \times e^{9}}{e} \\
& =e^{-5+9-1} \\
& =e^{3}
\end{aligned}
$$

(e) $\frac{e^{-5} \times e^{9}}{e}$

$$
\begin{aligned}
& =e^{-5+9-11} \\
& =e^{3}
\end{aligned}
$$

(f) $\frac{f^{-\frac{1}{2}} \times f^{4}}{f^{0} \times \sqrt{f} \div f^{-2}}$

$$
=\frac{f^{-\frac{1}{2}+4}}{f^{\frac{1}{2}-(-2)}}
$$

$$
=\frac{f^{3 \frac{1}{2}}}{f^{2 \frac{1}{2}}}
$$

$$
=f
$$

2. (a) $\left(\frac{3 w}{5}\right)^{-2}$

$$
=\left(\frac{5}{3 w}\right)^{2}
$$

$$
=\frac{25}{9 w^{2}}
$$

(b) $\left(\frac{3}{7 x}\right)^{-2}$

$$
\begin{aligned}
& =\left(\frac{7 x}{3}\right)^{2} \\
& =\frac{49 x^{2}}{9}
\end{aligned}
$$

(c) $3 \div 9 y^{2}$

$$
\begin{aligned}
& =3 \div \frac{9}{y^{2}} \\
& =3 \times \frac{y^{2}}{9} \\
& =\frac{y^{2}}{3}
\end{aligned}
$$

(d) $(5 z)^{0} \div 8 z^{-4}$

$$
\begin{aligned}
& =1 \div \frac{8}{z^{4}} \\
& =1 \times \frac{z^{4}}{8} \\
& =\frac{z^{4}}{8}
\end{aligned}
$$

3. (a) $(-27)^{\frac{2}{3}}$

$$
\begin{aligned}
& =(\sqrt[3]{-27})^{2} \\
& =(-3)^{2} \\
& =9
\end{aligned}
$$

(b) $8^{-\frac{2}{3}}$

$$
=\frac{1}{8^{\frac{2}{3}}}
$$

$$
=\frac{1}{(\sqrt[3]{8})^{2}}
$$

$$
=\frac{1}{2^{2}}
$$

$$
=\frac{1}{4}
$$

(c) $\sqrt[3]{0.027}$

$$
\begin{aligned}
& =\sqrt[3]{\frac{27}{1000}} \\
& =\sqrt[3]{\left(\frac{3}{10}\right)^{3}} \\
& =\frac{3}{10} \\
\text { (d) } & 3^{4}-3^{3} \\
& =81-27 \\
& =54
\end{aligned}
$$

4. (a) $2^{2 a-1}=128$

$$
=2^{7}
$$

$$
\begin{aligned}
2 a-1 & =7 \\
2 a & =8 \\
a & =4
\end{aligned}
$$

(b) $6^{3 b}=216$

$$
\begin{aligned}
& =6^{3} \\
3 b & =3 \\
b & =1
\end{aligned}
$$

Intermediate

(c) $3^{c+1}=27^{-1}$

$$
\begin{aligned}
& =\left(3^{3}\right)^{-1} \\
& =3^{-3} \\
c+1 & =-3 \\
c & =-4
\end{aligned}
$$

(d) $8^{3 d-1}=1$

$$
3 d-1=0
$$

$$
\begin{aligned}
3 d & =1 \\
d & =\frac{1}{3}
\end{aligned}
$$

5. (a) $0.0231=2.31 \times 10^{-2}$
(b) $62500=6.25 \times 10^{4}$
(c) $5390000=5.39 \times 10^{6}$
(d) $0.000005345=5.345 \times 10^{-6}$
6. (a) $9.43 \times 10^{-4}=0.000943$
(b) $6.1 \times 10^{4}=61000$
(c) $2.795 \times 10^{6}=2795000$
(d) $7 \times 10^{-7}=0.0000007$
7. (a) $\left(8.59 \times 10^{-7}\right) \times\left(0.392 \times 10^{5}\right)$

$$
\left.=3.37 \times 10^{-2} \text { (to } 3 \text { s.f. }\right)
$$

(b) $\left(8.05 \times 10^{6}\right) \div\left(7 \times 10^{-2}\right)$

$$
=1.15 \times 10^{8}
$$

(c) $3.2 \times 10^{6}+1.8 \times 10^{4}$

$$
=3.22 \times 10^{6} \text { (to } 3 \text { s.f.) }
$$

(d) $1.97 \times 10^{7}-2.02 \times 10^{5}$

$$
=1.95 \times 10^{7} \text { (to } 3 \text { s.f.) }
$$

8. 750 gigabytes $=750 \times 10^{9}$ bytes

$$
=7.5 \times 10^{11} \text { bytes }
$$

9. $0.5 \mathrm{MHz}=0.5 \times 10^{6}$ hertz

$$
=5 \times 10^{5} \text { hertz }
$$

10. $76 \mu \mathrm{~g}=76 \times 10^{-6} \mathrm{~g}$

$$
=7.6 \times 10^{-5} \mathrm{~g}
$$

11. (i) 273 picograms $=273 \times 10^{-12} \mathrm{~g}$

$$
=2.73 \times 10^{-10} \mathrm{~g}
$$

(ii) Total mass $=\left(0.3 \times 10^{9}\right) \times\left(2.73 \times 10^{-10}\right)$

$$
=8.19 \times 10^{-2}
$$

12. (a) $q: p=1.2 \times 10^{6}: 9.6 \times 10^{5}$

$$
\begin{array}{lclc}
= & 12 & : & 9.6 \\
= & 5 & : & 4
\end{array}
$$

(b) Distance between Beijing and Tokyo

$$
\begin{aligned}
& =9.6 \times 10^{5}+1.2 \times 10^{6} \\
& =2.16 \times 10^{6} \mathrm{~m}
\end{aligned}
$$

13. (a) Difference in mass $=2.66 \times 10^{-23}-1.99 \times 10^{-23}$

$$
\begin{aligned}
& =0.67 \times 10^{-23} \\
& =6.7 \times 10^{-24} \mathrm{~g}
\end{aligned}
$$

(b) Mass of one molecule $=1.99 \times 10^{-23}+2\left(2.66 \times 10^{-23}\right)$

$$
\begin{aligned}
& =1.99 \times 10^{-23}+5.32 \times 10^{-23} \\
& =7.31 \times 10^{-23} \mathrm{~g}
\end{aligned}
$$

14. (a) $\left(5 a^{2} b^{3}\right)^{3}$

$$
\begin{aligned}
& =125 a^{2 \times 3} b^{3 \times 3} \\
& =125 a^{6} b^{9}
\end{aligned}
$$

(b) $5 a^{4} b^{8} \times 9 a^{2} b^{3}$ $=45 a^{4+2} b^{8+3}$ $=45 a^{6} b^{11}$
(c) $\frac{a^{4} \times\left(a b^{2}\right)^{2}}{\left(a^{8} b\right)^{2}}$
$=\frac{a^{4} \times a^{1 \times 2} b^{2 \times 2}}{a^{8 \times 2} b^{1 \times 2}}$
$=\frac{a^{4+2} b^{4}}{a^{16} b^{2}}$
$=\frac{a^{6} b^{4}}{a^{16} b^{2}}$
$=\frac{b^{4-2}}{a^{16-6}}$
$=\frac{b^{2}}{a^{10}}$
(d) $-\left(4 a^{3} b\right)^{2} \times \frac{3 a^{5}}{8 b^{4}}$

$$
=-16 a^{3 \times 2} b^{1 \times 2} \times \frac{3 a^{5}}{8 b^{4}}
$$

$$
=-16 a^{6} b^{2} \times \frac{3 a^{5}}{8 b^{4}}
$$

$$
=-\frac{6 a^{6+5}}{b^{4-2}}
$$

$$
=-\frac{6 a^{11}}{b^{2}}
$$

15. (a) $3^{0}+\left(\frac{1}{3}\right)^{-4}$

$$
\begin{aligned}
& =1+3^{4} \\
& =1+81
\end{aligned}
$$

$$
=82
$$

(b) $8^{-2}+8^{0}-8^{1}$

$$
=\frac{1}{8^{2}}+1-8
$$

$$
=\frac{1}{64}-7
$$

$$
=-6 \frac{63}{64}
$$

(c) $9^{-1}+9^{0}+9^{\frac{1}{2}}$

$$
\begin{aligned}
& =\frac{1}{9}+1+3 \\
& =4 \frac{1}{9}
\end{aligned}
$$

(d) $16^{-\frac{3}{4}} \times 8^{2} \div 2^{-1}$

$$
\begin{aligned}
& =\left(2^{4}\right)^{-\frac{3}{4}} \times\left(2^{3}\right)^{2} \div 2^{-1} \\
& =2^{-3} \times 2^{6} \div 2^{-1} \\
& =2^{-3+6-(-1)} \\
& =2^{4} \\
& =16
\end{aligned}
$$

(e) $\left(\frac{3}{4}\right)^{-2}+3^{-1}-3$
$=\left(\frac{4}{3}\right)^{2}+\frac{1}{3}-3$
$=\frac{16}{9}-2 \frac{2}{3}$
$=-\frac{8}{9}$
(f) $\left(81^{\frac{1}{2}}-4^{0}\right) \times 3^{-2}$

$$
\begin{aligned}
& =(9-1) \times \frac{1}{3^{2}} \\
& =8 \times \frac{1}{9} \\
& =\frac{8}{9}
\end{aligned}
$$

(g) $\left(\frac{1}{27}\right)^{0} \times\left(\frac{27}{8}\right)^{-\frac{2}{3}} \div \frac{1}{3^{2}}$

$$
=1 \times\left(\frac{27}{8}\right)^{-\frac{2}{3}} \times 3^{2}
$$

$$
=\left[\left(\frac{2}{3}\right)^{3}\right]^{\frac{2}{3}} \times 9
$$

$$
=\left(\frac{2}{3}\right)^{2} \times 9
$$

$$
=\frac{4}{9} \times 9
$$

$$
=4
$$

(h) $\left(\frac{2}{3}\right)^{2} \div 125^{\frac{1}{3}}$

$$
\begin{aligned}
& =\left(\frac{2}{5}\right)^{-2} \div\left(5^{3}\right)^{\frac{1}{3}} \\
& =\frac{25}{4} \div 5 \\
& =\frac{25}{4} \times \frac{1}{5} \\
& =\frac{5}{4} \\
& =1 \frac{1}{4}
\end{aligned}
$$

16. (a) $\frac{\left(-2 x^{2} y\right)^{3}}{4 x^{-1}\left(y^{2}\right)^{3}}$

$$
\begin{aligned}
& =\frac{-8 x^{2 \times 3} y^{1 \times 3}}{4 x^{-1} y^{2 \times 3}} \\
& =-\frac{2 x^{6} y^{3}}{x^{-1} y^{6}} \\
& =-\frac{2 x^{6-(-1)}}{y^{6-3}} \\
& =-\frac{2 x^{7}}{y^{3}}
\end{aligned}
$$

(b) $\frac{\left(2 x^{2} y\right)^{3} \times \sqrt{x^{8}}}{x^{-2} y^{5}}$

$$
\begin{aligned}
& =\frac{8 x^{2 \times 3} y^{1 \times 3} \times x^{4}}{x^{-2} y^{5}} \\
& =\frac{8 x^{6+4} y^{3}}{x^{-2} y^{5}}
\end{aligned}
$$

$$
=\frac{8 x^{10-(-2)}}{y^{5-3}}
$$

$$
=\frac{8 x^{12}}{y^{2}}
$$

(c) $\frac{(2 x y)^{2}}{35 x y^{7}} \div\left(\frac{x^{-1} y^{-2}}{4}\right)^{-2}$

$$
\begin{aligned}
& =\frac{4 x^{1 \times 2} y^{1 \times 2}}{35 x y^{7}} \div\left(\frac{4}{x^{-1} y^{-2}}\right)^{2} \\
& =\frac{4 x^{2} y^{2}}{35 x y^{7}} \div\left(4 x y^{2}\right)^{2} \\
& =\frac{4 x^{2-1}}{35 y^{7-2}} \div 16 x^{1 \times 2} y^{2 \times 2} \\
& =\frac{4 x}{35 y^{5}} \times \frac{1}{16 x^{2} y^{4}} \\
& =\frac{1}{140 x y^{9}}
\end{aligned}
$$

(d) $\left(\frac{2 x}{y^{-1}}\right)^{2} \div\left(\frac{2}{x^{-2} y}\right)^{-2}$

$$
=\frac{4 x^{1 \times 2}}{y^{-1 \times 2}} \div\left(\frac{x^{-2} y}{2}\right)^{2}
$$

$$
=\frac{4 x^{2}}{y^{-2}} \div\left(\frac{y}{2 x^{2}}\right)^{2}
$$

$$
=4 x^{2} y^{2} \div \frac{y^{1 \times 2}}{4 x^{2 \times 2}}
$$

$$
=4 x^{2} y^{2} \div \frac{y^{2}}{4 x^{4}}
$$

$$
=4 x^{2} y^{2} \times \frac{4 x^{4}}{y^{2}}
$$

$$
=16 x^{6}
$$

22. (a) $p \times 2 q=4 \times 10^{9} \times 2 \times 3 \times 10^{5}$
23. $\frac{5^{p}}{\sqrt{5}}=5^{-p}$

$$
\frac{5^{p}}{5^{\frac{1}{2}}}=5^{-p}
$$

$$
5^{p-\frac{1}{2}}=5^{-p}
$$

$$
p-\frac{1}{2}=-p
$$

$$
2 p=\frac{1}{2}
$$

$$
p=\frac{1}{4}
$$

18. $\frac{a^{3} \times \sqrt[3]{a}}{\sqrt{a^{5}}}=a^{w}$
$\frac{a^{3} \times a^{\frac{1}{3}}}{a^{\frac{5}{2}}}=a^{w}$
$a^{3+\frac{1}{3}-\frac{5}{2}}=a^{w}$
$w=\frac{5}{6}$
19. $10^{3 q+2 q-r}$
$=\frac{\left(10^{3 p}\right)\left(10^{2 q}\right)}{10^{r}}$
$=\frac{\left(10^{p}\right)^{3}\left(10^{q}\right)^{2}}{10^{r}}$
$=\frac{(2)^{3}(3)^{2}}{1250}$
$=5.76 \times 10^{-2}$
20. (a) $10^{-4}-3.12 \times 10^{-5}$

$$
=6.88 \times 10^{-5}
$$

(b) $\frac{0.26 \times 10^{-4}}{2.31 \times 23 \times 10^{-2}}$

$$
\left.=4.89 \times 10^{-5} \text { (to } 3 \text { s.f. }\right)
$$

(c) $1.2 \times 10^{8}+2\left(3.5 \times 10^{7}\right)$ $=1.9 \times 10^{8}$
(d) $\sqrt[4]{1600 \times 10^{-4}}$ $=6.32 \times 10^{-1}$ (to 3 s.f.)
(e) $\frac{7.5 \times 10^{6}}{1.5 \times 10^{3}}+4.1 \times 10^{4}$

$$
=4.6 \times 10^{4}
$$

(f) $\frac{\left(4 \times 10^{2}\right)^{5}-\left(5 \times 10^{6}\right)}{\sqrt{16 \times 10^{-4}}}$

$$
=2.56 \times 10^{14} \text { (to } 3 \text { s.f.) }
$$

21. (a) $\frac{2 b}{a}=\frac{2\left(2 \times 10^{2}\right)}{5 \times 10^{-3}}$

$$
=8 \times 10^{4}
$$

(b) $\frac{3}{a}-b=\frac{3}{5 \times 10^{-3}}-2 \times 10^{2}$

$$
=4 \times 10^{2}
$$

(b) | | $=2.4 \times 10^{2}$ |
| ---: | :--- |
| p | $=$ |
| $\left.4 \times 10^{3}\right)^{2}$ | |

$$
=2.25 \times 10^{1}
$$

23. 3.3 nanoseconds $=3.3 \times 10^{-9}$ seconds

$$
\begin{aligned}
4.2 \text { billion } \mathrm{km} & =4.2 \times 10^{9} \mathrm{~km} \\
& =4.2 \times 10^{12} \mathrm{~m} \\
\text { Time taken }= & \frac{4.2 \times 10^{12}}{1 \div\left(3.3 \times 10^{-9}\right)} \\
= & 1.386 \times 10^{4} \text { seconds }
\end{aligned}
$$

24. (a) Difference in population $=50 \times 10^{6}-5.18 \times 10^{6}$

$$
=4.482 \times 10^{7}
$$

(b) $5.18 \times 10^{6}: 6.97 \times 10^{9}$

$$
1: 1350 \text { (to } 3 \text { s.f.) }
$$

25. (i) $0.000001654 \mathrm{~cm}=1.654 \times 10^{-6} \mathrm{~cm}$
(ii) Volume $=\frac{4}{3} \pi\left(\frac{1.654 \times 10^{-6}}{2}\right)^{3} \times 10^{6}$

$$
=2.37 \times 10^{-12} \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

26. $x=1, y=-2$

Advanced

27. (i) Number of daughter cells at the end of 1 hour $=2^{3}$
(ii) Number of daughter cells at the end of 1 day $=2^{72}$
(iii) Number of daughter cells at the end of 1 week $=2^{504}$
28. $\frac{8\left(9^{3 x}\right)-27^{2 x}}{3^{2 x+1} \times 81^{x-1}}=\frac{8\left(3^{2}\right)^{3 x}-\left(3^{3}\right)^{2 x}}{3\left(3^{2 x}\right) \times\left(3^{4}\right)^{x-1}}$

$$
\begin{aligned}
& =\frac{8\left(3^{6 x}\right)-3^{6 x}}{3\left(3^{2 x}\right) \times 3^{4 x} \times 3^{-4}} \\
& =\frac{7\left(3^{6 x}\right)}{3^{-3}\left(3^{6 x}\right)} \\
& =189
\end{aligned}
$$

29. (a) $\frac{2^{15}}{8^{5}}=\frac{\left(2^{3}\right)^{5}}{8^{5}}$

$$
\begin{aligned}
& =\frac{8^{5}}{8^{5}} \\
& =1
\end{aligned}
$$

(b) $2^{8} \times 5^{4}=\left(2^{2}\right)^{4} \times 5^{4}$

$$
\begin{aligned}
& =4^{4} \times 5^{4} \\
& =20^{4} \\
& =160000
\end{aligned}
$$

30. $9^{n}+9^{n}+9^{n}=243$

$$
\begin{aligned}
3\left(9^{n}\right) & =243 \\
9^{n} & =81 \\
& =9^{2} \\
n & =2
\end{aligned}
$$

New Trend

31. $16 \times 64^{n}=1$

$$
\begin{aligned}
4^{2} \times\left(4^{3}\right)^{n} & =4^{0} \\
4^{2+3 n} & =4^{0} \\
2+3 n & =0 \\
n & =-\frac{2}{3}
\end{aligned}
$$

32. (a) $2^{n} \times 2^{-2}=\frac{1}{32}$

$$
\begin{aligned}
2^{n-2} & =\frac{1}{2^{5}} \\
& =2^{-5} \\
n-2 & =-5 \\
n & =-3
\end{aligned}
$$

(b) $\frac{1}{36}=6^{k}$

$$
\frac{1}{6^{2}}=6^{k}
$$

$$
6^{k}=6^{-2}
$$

$$
k=-2
$$

33. $\left(\frac{2 x}{y^{-1}}\right)^{2} \div \frac{1}{3 x^{-3} y^{-3}}$
$=\frac{4 x^{2}}{y^{-1 \times 2}} \div \frac{x^{3} y^{3}}{3}$
$=\frac{4 x^{2}}{y^{-2}} \times \frac{3}{x^{3} y^{3}}$
$=\frac{12}{x y}$
34. (a) $\left(x^{9} y^{-3}\right)^{\frac{1}{3}} \times\left(x^{8} y^{-2}\right)^{\frac{3}{2}}$

$$
\begin{aligned}
& =x^{9 \times \frac{1}{3}} y^{-3 \times \frac{1}{3}} \times x^{8 \times \frac{3}{2}} y^{-2 \times \frac{3}{2}} \\
& =x^{3} y^{-1} \times x^{12} y^{-3} \\
& =x^{3+12} y^{-1+(-3)} \\
& =x^{15} y^{-4} \\
& =\frac{x^{15}}{y^{4}}
\end{aligned}
$$

(b) $\left(\frac{125}{x^{27}}\right)^{-\frac{1}{3}}=\left(\frac{x^{27}}{125}\right)^{\frac{1}{3}}$

$$
=\frac{x^{9}}{5}
$$

35. (a) (i) $11^{20} \div 11^{5}=11^{20-5}$

$$
=11^{15}
$$

(ii) $\frac{1}{121}=\frac{1}{11^{2}}$

$$
=11^{-2}
$$

(iii) $\sqrt[6]{11}=11^{\frac{1}{6}}$
36. (i) $46 \mu \mathrm{~m}=46 \times 10^{-6} \mathrm{~m}$

$$
=4.6 \times 10^{-5} \mathrm{~m}
$$

(ii) Area $=\pi\left(4.6 \times 10^{-5}\right)^{2}$

$$
=6.65 \times 10^{-9} \mathrm{~m}^{2} \text { (to } 3 \text { s.f.) }
$$

37. (a) $12000=1.2 \times 10^{4}$
(b) Percentage increase in speed

$$
\begin{aligned}
& =\frac{1.14 \times 10^{7}-9.7 \times 10^{6}}{9.7 \times 10^{6}} \times 100 \% \\
& =\frac{10^{6}(1.14 \times 10-9.7)}{9.7 \times 10^{6}} \times 100 \% \\
& =\frac{1.7}{9.7} \times 100 \% \\
& =17.5 \%(\text { to } 3 \text { s.f. })
\end{aligned}
$$

(c) $29 \mathrm{~m} / \mathrm{s}=\frac{29 \mathrm{~m}}{1 \mathrm{~s}}$

$$
\begin{aligned}
& =\frac{(29 \div 1000) \mathrm{km}}{(1 \div 3600) \mathrm{h}} \\
& =104.4 \mathrm{~km} / \mathrm{h} \\
& =1.044 \times 10^{2} \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

38. (a) Difference in population $=6.64 \times 10^{7}-5.077 \times 10^{6}$

$$
\begin{aligned}
& =6.64 \times 10^{7}-0.5077 \times 10^{7} \\
& =6.1323 \times 10^{7}
\end{aligned}
$$

(b) 100% represent the population of Thailand in 1950 . 338% represent the population of Thailand in 2010 $=6.64 \times 10^{7}$
Population of Thailand in $1950=\frac{6.64 \times 10^{7}}{338} \times 100$

$$
=1.96 \times 10^{7} \text { (to } 3 \text { s.f.) }
$$

39. (a) $50197.4 \times 10^{9} \mathrm{~Wh}=50197.4 \times 10^{6} \mathrm{kWh}$

$$
=5.01974 \times 10^{10} \mathrm{kWh}
$$

(b) Mean domestic electricity consumed per person
$=\frac{4716.1 \times 10^{9}}{3.111 \times 10^{6}}$
$=1516 \mathrm{kWh}$ (to the nearest kWh)
(c) 100% represent electricity consumption in 2000.

Electricity consumption in 2015 is represented
by $100-41.6=58.4 \%$
Electricity consumption in 2000
$=\frac{5471.2}{58.4} \times 100$
$=9368 \mathrm{GWh}$ (to the nearest GWh)
40. (i) When $t=0$,
$V=20000 \times 1.1^{0}$ $=20000$
\therefore The value of the flat when it was first built was PKR 20000.
(ii) When $t=2$,

PKR $V=20000 \times 1.1^{2}$

$$
=24200
$$

Percentage increase $=\frac{24200-20000}{20000} \times 100 \%$

$$
=21 \%
$$

\therefore The value of the flat increased by 21% after two years.
41. (a) $P=35480 \times 1.0125^{5}$

$$
\text { = PKR } 37753.63 \text { (to the nearest paisa) }
$$

(b) Percentage increase in the balance

$$
\begin{aligned}
& =\frac{37753.63-35480}{35480} \times 100 \% \\
& =6.41 \% \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

42. $200 \mathrm{ha}=200000 \mathrm{~m}^{2}$

Number of trees on $200000 \mathrm{~m}^{2}=\frac{200000}{10} \times 4$

$$
=80000
$$

Total number of fruits on trees $=60 \times 80000$

$$
\begin{aligned}
& =4800000 \\
& =4.8 \times 10^{6}
\end{aligned}
$$

Average number of seeds produced
by these fruits $=\frac{1.44 \times 10^{7}}{4.8 \times 10^{6}}$

$$
=3
$$

43. (a) 8.48 light years $=8.48 \times 9.46 \times 10^{15} \mathrm{~m}$

$$
\begin{aligned}
& =80.2208 \times 10^{15} \mathrm{~m} \\
& =8.02208 \times 10^{13} \mathrm{~km}
\end{aligned}
$$

(b) 4.35 light years $=4.35 \times 9.46 \times 10^{15} \mathrm{~m}$

$$
\begin{aligned}
& =41.151 \times 10^{15} \mathrm{~m} \\
& =4.1151 \times 10^{16} \mathrm{~m} \\
& =4.1151 \times 10^{13} \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
\text { Time taken } & =\frac{4.1151 \times 10^{13}}{50000} \\
& =0.82302 \times 10^{9} \mathrm{~h} \\
& =\frac{0.82302 \times 10^{9} \mathrm{~h}}{(365 \times 24) \mathrm{h}} \\
& =0.00009395205 \times 10^{9} \text { years } \\
& =94000 \text { years (to } 2 \text { s.f.) }
\end{aligned}
$$

Chapter 6 Linear Inequalities

Basic

1. (a) $15<30$
(b) $-2>-5$
(c) $(-3)^{2}>-9$
(d) $-2^{4}=-16$
(e) $\left(-\frac{1}{3}\right)^{11}<\left(-\frac{1}{3}\right)^{4}$
(f) $\sqrt{16}<\sqrt{10}$
(g) $h-3>h-4$
(h) $k+10>k+7$
(i) $12-p<14-p$
(j) $16-4 q<2(8-q)$
2. (a) $a<b$
(b) $d>-3$
(c) $-\frac{h}{2}<-\frac{k}{2}$
(d) $3 m \geqslant 3 n$
(e) $-6 p \geqslant-6 q$
3. (a) $-5 x>75$

(b) $-7 x \geqslant 24$
$x>-3 \frac{3}{7}$

(c) $a+1 \geqslant 3$

(d) $b-2 \leqslant 5$
$b \leqslant 7$

(e) $-c+1>2$

$$
\begin{aligned}
& -c>1 \\
& c<-1
\end{aligned}
$$

(f) $-6 d-3 \geqslant 0$

$$
-6 d \geqslant 3
$$

$$
d \leqslant-\frac{1}{2}
$$

(g) $12-e<-2$

$$
-e<-14
$$

$$
e>14
$$

(h) $20+4 f \leqslant f-1$

(i) $3-2 g \leqslant-4-g$

(j) $2(1-5 h) \geqslant 4(3-h)$
$2-10 h \geqslant 12-4 h$
$-6 h \geqslant 10$

$$
h \leqslant-1 \frac{2}{3}
$$

(k) $2(i+3)>4(1-i)$

$$
\begin{aligned}
2 i+6 & >4-4 i \\
6 i & >-2 \\
i & >-\frac{1}{3}
\end{aligned}
$$

(l) $8 j-1>4(-3 j)$
$8 j-1>-12 j$

$$
20 j>1
$$

$$
j>\frac{1}{20}
$$

(m) $9(1-2 k) \leqslant 2(3-k)$

$$
\begin{aligned}
9-18 k & \leqslant 6-2 k \\
-16 k & \leqslant-3 \\
k & \geqslant \frac{3}{16}
\end{aligned}
$$

(n) $2(5-4 l) \geqslant 5 l+1$

$$
10-8 l \geqslant 5 l+1
$$

$$
-13 l \geqslant-9
$$

$$
l \leqslant \frac{9}{13}
$$

(o) $4(2 m+3) \geqslant 2(m+7)-3(2 m-1)$

$$
\begin{aligned}
8 m+12 & \geqslant 2 m+14-6 m+3 \\
8 m+12 & \geqslant 17-4 m \\
12 m & \geqslant 5 \\
m & \geqslant \frac{5}{12} \\
\hdashline\left.\right|_{-2} & -1
\end{aligned}
$$

4. (b) $2 x+1>16$

$$
\begin{aligned}
2 x & >15 \\
x & >7 \frac{1}{2}
\end{aligned}
$$

\therefore Smallest integer value of x is 8 .
(c) $9 x+12>30$
$9 x>18$

$$
x>2
$$

\therefore Smallest integer value of x is 3 .
(d) $10 x+2 \geqslant 20$

$$
\begin{aligned}
10 x & \geqslant 18 \\
x & \geqslant 1.8
\end{aligned}
$$

\therefore Smallest integer value of x is 2 .
5. (b) $3 y-2<13$

$$
\begin{aligned}
3 y & <15 \\
y & <5
\end{aligned}
$$

\therefore Largest integer value of y is 4 .
(c) $16 y+1 \leqslant 31$

$$
\begin{aligned}
16 y & \leqslant 30 \\
y & \leqslant 1 \frac{7}{8}
\end{aligned}
$$

\therefore Largest integer value of y is 1 .
() $4(2 y+3)<24$

$$
\begin{aligned}
2 y+3 & <6 \\
2 y & <3 \\
y & <1 \frac{1}{2}
\end{aligned}
$$

\therefore Largest integer value of y is 1 .
6. $\frac{1}{2} h+\frac{1}{3}(h-6) \geqslant 3$

$$
\frac{1}{2} h+\frac{1}{3} h-2 \geqslant 13
$$

$$
\begin{aligned}
\frac{5}{6} h & \geqslant 15 \\
h & \geqslant 18
\end{aligned}
$$

(a) Least integer value of h is 18 .
(b) Least prime number h is 19 .
7. $3(x+2) \geqslant 5(x-1)$
$3 x+6 \geqslant 5 x-5$
$-2 x \geqslant-11$
$x \leqslant 5 \frac{1}{2}$
(a) $5 \frac{1}{2}$
(b) 5
(c) 5
8. $6+x \leqslant 30$

$$
x \leqslant 24
$$

(a) $2,3,5,7,11,13,17,19,23$
(b) 16
9. Let x be the number of PKR 2 notes.
$2 x+10(21-x)<110$
$2 x+210-10 x<110$

$$
\begin{aligned}
-8 x & <-100 \\
x & >12.5
\end{aligned}
$$

\therefore Minimum number of PKR 2 notes is 13 .
10. Let x be the mark Sarah scores for her third History test.
$\frac{72+58+x}{3} \geqslant 70$

$$
\begin{aligned}
130+x & \geqslant 210 \\
x & \geqslant 80
\end{aligned}
$$

\therefore Minimum mark is 80 .
11. Let PKR x be the amount that Nasir pays.
$x+50+x \leqslant 220$

$$
\begin{aligned}
2 x+50 & \leqslant 220 \\
2 x & \leqslant 170 \\
x & \leqslant 85
\end{aligned}
$$

\therefore Greatest amount that Mishal pays is PKR 135.
12. Let x be the number of kiwi fruits he sells.
$0.55 x-66.50 \geqslant 20$

$$
0.55 x \geqslant 86.5
$$

$$
x \geqslant 157 \frac{3}{11}
$$

\therefore Least number of kiwi fruits is 158 .
13. (i) Maximum amount $=\operatorname{PKR} 1.50 \times 12$

$$
\begin{aligned}
& =\text { PKR } 18 \\
\text { Minimum amount } & =\text { PKR } 1.20 \times 12 \\
& =\text { PKR } 14.40
\end{aligned}
$$

(ii) Let x be the number of cups of ice-cream.

$$
\begin{aligned}
(1.50) x+(1.20)(2)+(1.20)(10-x) & \leqslant 16 \\
1.5 x+2.4+12-1.2 x & \leqslant 16 \\
0.3 x & \leqslant 1.6 \\
x & \leqslant 5 \frac{1}{3}
\end{aligned}
$$

\therefore Maximum number of cups of ice-cream is 5 .
14. Let the length of the square be $x \mathrm{~cm}$.
$4 x \leqslant 50$

$$
x \leqslant 12.5
$$

Largest possible area $=12.5^{2}$

$$
=156.3 \mathrm{~cm}^{2} \text { (to } 4 \text { s.f.) }
$$

15. (a) $x+1 \leqslant 5$ and $2 x>-8$

$$
x \leqslant 4 \quad x>-4
$$

$\therefore-4<x \leqslant 4$
(b) $4 x+2<10 \quad$ and $\quad 3 x-1 \geqslant 11$

$$
\begin{array}{rlr}
4 x & <8 & 3 x
\end{array} \geqslant 12
$$

\therefore No solution
(c) $x+1<14 \quad$ and $\quad 2 x+3>12$
$x<13$

$$
2 x>9
$$

$$
x>4 \frac{1}{2}
$$

$\therefore 4 \frac{1}{2}<x<13$
(d) $6+2 x>0$ and
$2 x>-6$
$x>-3$
$\therefore-3<x<9 \frac{1}{2}$
(e) $x+3<22$

$$
x<19
$$

and

$$
\begin{aligned}
14 & \leqslant 5 x-2 \\
-5 x & \leqslant-16 \\
x & \geqslant 3 \frac{1}{5}
\end{aligned}
$$

$\therefore 3 \frac{1}{5} \leqslant x<19$
(f) $x-1<10$ and $4 x+1>7$
$x<11$
$4 x>6$

$$
x>1 \frac{1}{2}
$$

$\therefore 1 \frac{1}{2}<x<11$
(g) $2 x-3 \leqslant 5$
and

$$
\begin{aligned}
7-6 x & \leqslant-3 \\
-6 x & \leqslant-10 \\
x & \geqslant 1 \frac{2}{3}
\end{aligned}
$$

$\therefore 1 \frac{2}{3} \leqslant x \leqslant 4$
(h) $10 x-7<11$
and

$$
x<1 \frac{4}{5}
$$

$$
\begin{aligned}
5 x-2 & >-4 \\
5 x & >-2 \\
x & >-\frac{2}{5}
\end{aligned}
$$

$$
\therefore-\frac{2}{5}<x<1 \frac{4}{5}
$$

(i) $2 x-9<14$
and
$3 x-8>11$
$2 x<23$
$3 x>19$
$x<11 \frac{1}{2}$
$x>6 \frac{1}{3}$

$$
\therefore 6 \frac{1}{3}<x<11 \frac{1}{2}
$$

(j) $14-x>3$ an

$$
\begin{aligned}
1-2 x & <10 \\
-2 x & <9 \\
x & >-4 \frac{1}{2}
\end{aligned}
$$

Intermediate

21. (a) $\frac{3 x}{6} \leqslant-8$

$$
x \leqslant-16
$$

(b) $\frac{x+1}{4} \geqslant \frac{x}{3}$ $3 x+3 \geqslant 4 x$ $-x \geqslant-3$

$$
x \leqslant 3
$$

(c) $\frac{1}{4}+\frac{1}{3} x>3 x-\frac{1}{2}$

$$
\begin{aligned}
\frac{3+4 x}{12} & >\frac{6 x-1}{2} \\
6+8 x & >72 x-12 \\
-64 x & >-18 \\
x & <\frac{9}{32}
\end{aligned}
$$

(d) $\frac{x-1}{2}-\frac{x+1}{3}<1 \frac{1}{6}$

$$
\begin{aligned}
\frac{3(x-1)-2(x+1)}{6} & <\frac{7}{6} \\
3 x-3-2 x-2 & <7 \\
x-5 & <7 \\
x & <12
\end{aligned}
$$

(e) $\frac{2 x+1}{3}<\frac{3 x-4}{5}+\frac{2}{3}$

$$
\begin{aligned}
\frac{2 x+1}{3} & <\frac{3(3 x-4)+2(5)}{15} \\
\frac{2 x+1}{3} & <\frac{9 x-12+10}{15} \\
\frac{2 x+1}{3} & <\frac{9 x-2}{15} \\
30 x+15 & <27 x-6 \\
3 x & <-21 \\
x & <-7
\end{aligned}
$$

$$
\text { (f) } \frac{2 x-1}{4}-\frac{2 x-7}{3}<\frac{5}{7}
$$

$$
\frac{3(2 x-1)-4(2 x-7)}{12}<\frac{5}{7}
$$

$$
\frac{6 x-3-8 x+28}{12}<\frac{5}{7}
$$

$$
\frac{25-2 x}{12}<\frac{5}{7}
$$

$$
175-14 x<60
$$

$$
-14 x<-115
$$

$$
x>8 \frac{3}{14}
$$

(g) $\frac{5 x}{6}-\frac{7}{9} \leqslant 2 x-4 \frac{1}{2}$

$$
\begin{aligned}
\frac{15 x-14}{18} & \leqslant \frac{4 x-9}{2} \\
30 x-28 & \leqslant 72 x-162 \\
-42 x & \leqslant-134 \\
x & \geqslant 3 \frac{4}{21}
\end{aligned}
$$

(h) $\frac{2-4 x}{5} \geqslant 2 \frac{1}{2}-6 x$

$$
\begin{aligned}
\frac{2-4 x}{5} & \geqslant \frac{5-12 x}{2} \\
4-8 x & \geqslant 25-60 x \\
52 x & \geqslant 21 \\
x & \geqslant \frac{21}{52}
\end{aligned}
$$

(i) $\frac{2 x-7}{8}+\frac{x-3}{4} \leqslant \frac{2 x+3}{6}+1$

$$
\frac{2 x-7+2(x-3)}{8} \leqslant \frac{2 x+3+6}{6}
$$

$$
\frac{2 x-7+2 x-6}{8} \leqslant \frac{2 x+9}{6}
$$

$$
\frac{4 x-13}{8} \leqslant \frac{2 x+9}{6}
$$

$$
24 x-78 \leqslant 16 x+72
$$

$$
8 x \leqslant 150
$$

$$
x \leqslant 18 \frac{3}{4}
$$

(j) $\frac{x}{5}-4<3-\frac{5}{4} x$

$$
\frac{x}{5}+\frac{5}{4} x<7
$$

$$
\frac{4 x+25 x}{20}<7
$$

$$
\frac{29 x}{20}<7
$$

$$
x<4 \frac{24}{29}
$$

(k) $\frac{1}{3}(4 x-3)>\frac{1}{2}(x+5)$

$$
\begin{aligned}
8 x-6 & >3 x+15 \\
5 x & >21 \\
x & >4 \frac{1}{5}
\end{aligned}
$$

22. (a) $2-x<2 x+3 \leqslant x+6$

$$
\begin{array}{rlrl}
2-x & <2 x+3 \quad \text { and } & 2 x+3 & \leqslant x+6 \\
-3 x & <1 \\
x & >-\frac{1}{3} & x & \leqslant 3 \\
\therefore-\frac{1}{3} & <x \leqslant 3 \\
\text { (b) } x+2 & <14<3 x+1 \\
x+2 & <14 \quad \text { and } & & \\
x & >12 & & \\
& & & \\
& & & \\
& & & \\
& & <3 x+1 \\
& & x & >4 \frac{1}{3}
\end{array}
$$

$\therefore 4 \frac{1}{3}<x<12$
(c) $8 x+1 \leqslant 2 x+1 \leqslant 3 x+2$
$\therefore-1 \leqslant x \leqslant 0$
(d) $3 x-3 \leqslant 5 x+9 \leqslant x+35$
(e) $6 x+4<4 x-2 \leqslant 2 x+1$
$6 x+4<4 x-2 \quad$ and
$\therefore x<-3$
(f) $x+2 \geqslant 1-3 x>x-11$
(g) $3 x-5<26 \leqslant 4 x-6$

$$
\begin{aligned}
3 x-5 & <26 & \text { and } & 26
\end{aligned} \leqslant 4 x-6
$$

23. (a) $x-\frac{3}{2}<\frac{5-6 x}{4}<x+\frac{1}{2}$

$$
\left.\begin{array}{rlrl}
x-\frac{3}{2} & <\frac{5-6 x}{4} & \text { and } & \frac{5-6 x}{4}
\end{array}<x+\frac{1}{2}\right)
$$

(b) $2+\frac{3 x}{2} \leqslant \frac{5 x+1}{3} \leqslant \frac{3 x+11}{2}$
$2+\frac{3 x}{2} \leqslant \frac{5 x+1}{3} \quad$ and $\quad \frac{5 x+1}{3} \leqslant \frac{3 x+11}{2}$
$\frac{4+3 x}{2} \leqslant \frac{5 x+1}{3}$

$$
10 x+2 \leqslant 9 x+33
$$

$12+9 x \leqslant 10 x+2$

$$
x \leqslant 31
$$

$$
-x \leqslant-10
$$

$$
x \geqslant 10
$$

$\therefore 10 \leqslant x \leqslant 31$

$$
\begin{aligned}
& x+2 \geqslant 1-3 x \quad \text { and } \\
& 4 x \geqslant-1 \\
& \begin{array}{c}
1-3 x>x-11 \\
-4 x>-12
\end{array} \\
& x \geqslant-\frac{1}{4} \\
& \therefore-\frac{1}{4} \leqslant x<3
\end{aligned}
$$

$$
\begin{aligned}
& 2 x<-6 \\
& x<-3 \\
& 2 x \leqslant 3 \\
& x \leqslant 1 \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 3 x-3 \leqslant 5 x+9 \quad \text { and } \\
& -2 x \leqslant 12 \\
& x \geqslant-6 \\
& 5 x+9 \leqslant x+35 \\
& 4 x \leqslant 26 \\
& x \leqslant 6 \frac{1}{2} \\
& \therefore-6 \leqslant x \leqslant 6 \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 8 x+1 \leqslant 2 x+2 \text { and } 2 x+1 \leqslant 3 x+2 \\
& 6 x \leqslant 0 \\
& x \leqslant 0 \\
& -x \leqslant 1 \\
& x \geqslant-1
\end{aligned}
$$

(h) $\frac{2}{5} x<2 x-1 \leqslant \frac{10+2 x}{15}$

$$
\begin{aligned}
& \frac{2}{5} x<2 x-1 \quad \text { and } \quad 2 x-1 \leqslant \frac{10+2 x}{15} \\
& 2 x<10 x-5 \quad 30 x-15 \leqslant 10+2 x \\
& -8 x<-5 \\
& x>\frac{5}{8} \\
& \therefore \frac{5}{8}<x \leqslant \frac{25}{28}
\end{aligned}
$$

24. $\frac{1}{2}(y-4)>\frac{2 y}{3}$

$$
3 y-12>4 y
$$

$$
\begin{aligned}
-y & >12 \\
y & <-12
\end{aligned}
$$

\therefore Largest integer value of y is -13 .
25. $3-3 x \leqslant 2+2 x<5 x+1$

$$
\begin{aligned}
3-3 x & \leqslant 2+2 x & \text { and } & 2+2 x & <5 x+1 \\
-5 x & \leqslant-1 & & -3 x & <-1 \\
x & \geqslant \frac{1}{5} & & x & >\frac{1}{3}
\end{aligned}
$$

$\therefore x>\frac{1}{3}$
(a) 1
(b) 2
26. $3 x+5<4 x-2 \leqslant 3 x+7$

$$
\begin{array}{rlrl}
3 x+5 & <4 x-2 & \text { and } & \\
-x & <x-2 & \leqslant 3 x+7 \\
-x & & x & \leqslant 9
\end{array}
$$

$\therefore 7<x \leqslant 9$
Integer values of x are 8 and 9 .
27. $\frac{q+8}{3} \leqslant \frac{4 q}{3}-4$

$$
\begin{aligned}
\frac{q+8}{3} & \leqslant \frac{4 q-12}{3} \\
q+8 & \leqslant 4 q-12 \\
-3 q & \leqslant-20 \\
q & \geqslant 6 \frac{2}{3}
\end{aligned}
$$

(a) 7
(b) 7
28. $\frac{1}{4} x-\frac{3}{5}\left(x+\frac{1}{3}\right) \leqslant \frac{1}{2}(x-9)$

$$
\begin{aligned}
\frac{1}{4} x-\frac{3}{5} x-\frac{1}{5} & \leqslant \frac{1}{2} x-\frac{9}{2} \\
-\frac{7}{20} x-\frac{1}{5} & \leqslant \frac{1}{2} x-\frac{9}{2} \\
-\frac{17}{20} x & \leqslant-\frac{43}{10} \\
x & \geqslant 5 \frac{1}{17}
\end{aligned}
$$

(a) $5 \frac{1}{17}$
(b) 6
29. $\frac{y+8}{3} \leqslant \frac{4 y}{5}-1$

$$
\begin{aligned}
\frac{y+8}{3} & \leqslant \frac{4 y-5}{5} \\
5 y+40 & \leqslant 12 y-15 \\
-7 y & \leqslant-55 \\
y & \geqslant 7 \frac{6}{7}
\end{aligned}
$$

(a) 8
(b) 11
30. $40<60-50 t<50$
31. $5<x-1<9$ and $\quad 9 \frac{1}{2}<2 x+1 \frac{1}{2}<18$ $6<x<10$

$$
8<2 x<16 \frac{1}{2}
$$

$$
4<x<8 \frac{1}{4}
$$

$\therefore 6<x<8 \frac{1}{4}$
Integers are 7 and 8 .
32. $x<3+8$
$\therefore x<11$
33. Let the integers be $x, x+1$ and $x+2$.

$$
\begin{aligned}
x+x+1+x+2 & \leqslant 370 \\
3 x+3 & \leqslant 370 \\
3 x & \leqslant 367 \\
x & \leqslant 122 \frac{1}{3}
\end{aligned}
$$

(a) 123
(b) $\sqrt{124}=11.1$ (to 3 s.f.)
34. Let $x \mathrm{~m}$ be the breadth of the plot.
$2(4 x+x) \leqslant 220$

$$
\begin{aligned}
10 x & \leqslant 220 \\
x & \leqslant 22
\end{aligned}
$$

Largest possible area $=(88)(22)$

$$
=1936 \mathrm{~m}^{2}
$$

35. Let Farhan's age be x years.

$$
\begin{aligned}
x+2 x & \geqslant 53 \\
3 x & \geqslant 53 \\
x & \geqslant 17 \frac{2}{3}
\end{aligned}
$$

\therefore Minimum age of Farhan is 18 years.

$$
\begin{aligned}
& 40<60-50 t \\
& 50 t<20 \\
& \text { and } \quad \begin{aligned}
60-50 t & <50 \\
-50 t & <-10
\end{aligned} \\
& t<\frac{2}{5} \\
& \therefore \frac{1}{5}<t<\frac{2}{5} \\
& t>\frac{1}{5}
\end{aligned}
$$

36. Let the number of questions he answered correctly be x.
$2 x-(18-x)>30$
$2 x-18+x>30$
$3 x>48$

$$
x>16
$$

\therefore Minimum number of questions he answered correctly is 17 .
37. Let x be the number of strawberries.
$x+\frac{2}{3} x \leqslant 65$

$$
\begin{aligned}
\frac{5}{3} x & \leqslant 65 \\
x & \leqslant 39
\end{aligned}
$$

\therefore Maximum number of strawberries is 39 .
38. Let the number of 50 -paisa coins be x.

$$
\begin{aligned}
3(50)+20(2)+x(0.5) & \leqslant 200 \\
150+40+0.5 x & \leqslant 200 \\
0.5 x & \leqslant 10 \\
x & \leqslant 20
\end{aligned}
$$

\therefore Maximum number of 50 -paisa coins is 20 .
39. (a) Greatest possible value of $a+b=3+(-2)$

$$
=1
$$

(b) Least possible value of $a-b=-5-(-2)$

$$
=-3
$$

(c) Largest possible value of $a b=(-5)(-8)$

$$
=40
$$

(d) Smallest possible value of $\frac{a}{b}=\frac{3}{-2}$

$$
=-1 \frac{1}{2}
$$

(e) Greatest possible value of $a^{2}=(-5)^{2}$

$$
=25
$$

Least possible value of $a^{2}=0^{2}$

$$
=0
$$

Advanced

43. (a) Greatest possible value of $(x-y)^{2}=[8-(-5)]^{2}$

$$
=169
$$

(b) Least possible value of $(x+y)^{2}=[5+(-5)]^{2}$

$$
=0
$$

(c) Largest possible value of $\frac{2 y}{x}=\frac{2(2)}{2}$

$$
=2
$$

(d) Largest possible value of $\frac{y^{2}}{x}=\frac{(-5)^{2}}{2}$

$$
=12 \frac{1}{2}
$$

(e) Greatest possible value of $x^{3}-y^{3}=8^{3}-(-5)^{3}$

$$
=637
$$

Least possible value of $x^{3}-y^{3}=2^{3}-2^{3}$

$$
=0
$$

44. (a) Least possible value of $p^{2}-q^{2}=\left(-\frac{1}{2}\right)^{2}-6^{2}$

$$
=-35 \frac{3}{4}
$$

(b) Least possible value of $p^{2}+q^{2}=\left(-\frac{1}{2}\right)^{2}+0^{2}$

$$
=\frac{1}{4}
$$

(c) Largest possible value of $p q=(-2)(-1)$

$$
=2
$$

(d) Smallest possible value of $\frac{q}{p}=\frac{6}{-\frac{1}{2}}$

$$
=-12
$$

(e) Greatest possible value of $p^{3}+q^{3}=\left(-\frac{1}{2}\right)^{2}+6^{3}$

$$
=215 \frac{7}{8}
$$

Least possible value of $p^{3}+q^{3}=(-2)^{3}+(-1)^{3}$

$$
=-9
$$

New Trend

45. (i) $-10<7-2 x \leqslant-1$
(ii) Integers are 4, 5, 6, 7 and 8 .
46. $2(x+1)>\frac{3}{5}(x-4)$
$10(x+1)>3(x-4)$
$10 x+10>3 x-12$

$$
\begin{aligned}
7 x & >-22 \\
x & >-3 \frac{1}{7}
\end{aligned}
$$

47. (a) $-5<x \leqslant 3$

Integers are $-4,-3,-2,-1,0,1,2$ and 3 .
(b) $x-3<2 x-1<5+x$
$x-3<2 x-1$ and $2 x-1<5+x$

$$
-x<2
$$

$$
x<6
$$

$$
x>-2
$$

$\therefore-2<x<6$

$$
\begin{aligned}
& -10<7-2 x \quad \text { and } \\
& 7-2 x \leqslant-1 \\
& 2 x<17 \\
& -2 x \leqslant-8 \\
& x<8 \frac{1}{2} \\
& x \geqslant 4 \\
& \therefore 4 \leqslant x<8 \frac{1}{2}
\end{aligned}
$$

Chapter 7 Pythagoras' Theorem

Basic

1. (a) Using Pythagoras' Theorem,

$$
\begin{aligned}
a^{2} & =11.9^{2}+6.8^{2} \\
& =187.85 \\
a & =\sqrt{187.85} \\
& =13.7 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(b)

Using Pythagoras' Theorem,

$$
\begin{aligned}
x^{2}+4.8^{2} & =12.4^{2} \\
x^{2} & =130.72 \\
x & =\sqrt{130.72}
\end{aligned}
$$

Using Pythagoras’ Theorem,

$$
\begin{aligned}
b^{2} & =130.72+(7.4+4.8)^{2} \\
& =279.56 \\
b & =\sqrt{279.56} \\
& =16.7 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

2. (a) Using Pythagoras' Theorem,

$$
\begin{aligned}
(3 a)^{2}+(2 a)^{2} & =18.9^{2} \\
9 a^{2}+4 a^{2} & =357.21 \\
13 a^{2} & =357.21 \\
a^{2} & =27.47 \text { (to } 4 \text { s.f.) } \\
a & =\sqrt{27.47} \\
& =5.24 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(b) Using Pythagoras' Theorem,

$$
\begin{aligned}
(3 b+4 b+3 b)^{2}+16.3^{2} & =29.6^{2} \\
(10 b)^{2} & =29.6^{2}-16.3^{2} \\
100 b^{2} & =610.47 \\
b^{2} & =6.1047 \\
b & =\sqrt{6.1047} \\
& =2.47 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

3. Using Pythagoras' Theorem,

$$
\begin{aligned}
a^{2} & =5^{2}+12^{2} \\
& =169 \\
a & =\sqrt{169} \\
& =13
\end{aligned}
$$

Using Pythagoras’ Theorem,

$$
\begin{aligned}
b^{2}+12^{2} & =21^{2} \\
b^{2} & =21^{2}-12^{2} \\
& =297 \\
b & =\sqrt{297} \\
& =17.2 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

$\therefore a=13, b=17.2$
4. Using Pythagoras' Theorem,

$$
\begin{aligned}
(x+1)^{2}+(4 x)^{2} & =(4 x+1)^{2} \\
x^{2}+2 x+1+16 x^{2} & =16 x^{2}+8 x+1 \\
x^{2}-6 x & =0 \\
x(x-6) & =0 \\
x & =0 \text { (rejected) or } x=6
\end{aligned}
$$

5. Let the length of the ladder be $x \mathrm{~m}$.

Using Pythagoras' Theorem,

$$
\begin{aligned}
x^{2} & =3.2^{2}+0.8^{2} \\
& =\sqrt{10.88} \\
x & =3.30 \quad \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The length of the ladder is 3.30 m .
6. Let the vertical height of the cone be $h \mathrm{~cm}$.

Using Pythagoras' Theorem,

$$
\begin{aligned}
h^{2}+8^{2} & =12^{2} \\
h^{2} & =12^{2}-8^{2} \\
& =80 \\
h & =\sqrt{80} \\
& =8.94 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The vertical height of the cone is 8.94 cm .
7. Let the length of the diagonal be $x \mathrm{~m}$.

Using Pythagoras' Theorem,

$$
\begin{aligned}
x^{2} & =14^{2}+12^{2} \\
& =340 \\
x & =\sqrt{340} \\
& =18.4 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The length of the fence is 18.4 m .
8. Let the distance between the tips of the hands be $x \mathrm{~m}$.

Using Pythagoras' Theorem,

$$
\begin{aligned}
x^{2} & =3.05^{2}+3.85^{2} \\
& =24.125 \\
x & =\sqrt{24.125} \\
& =4.91 \quad \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The distance between the tips of the hands is 4.91 m .
9.

Using Pythagoras' Theorem,

$$
\begin{aligned}
x^{2} & =14^{2}+1.6^{2} \\
& =198.56 \\
x & =\sqrt{198.56} \\
& =14.1 \quad \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The distance between the top of the two posts is 14.1 m .
10. Using Pythagoras' Theorem,

$$
\begin{aligned}
\left(\frac{d}{2}\right)^{2}+9^{2} & =18^{2} \\
\left(\frac{d}{2}\right)^{2} & =18^{2}-9^{2} \\
& =243 \\
\frac{d}{2} & =\sqrt{243} \\
d & =2 \sqrt{243} \\
& =31.2 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

11. (a) $A C^{2}=32^{2}$

$$
=1024
$$

$$
A B^{2}+B C^{2}=24^{2}+28^{2}
$$

$$
=1360
$$

Since $A C^{2} \neq A B^{2}+B C^{2}$,
$\therefore \triangle A B C$ is not a right-angled triangle.
(b) $D F^{2}=85^{2}$

$$
=7225
$$

$D E^{2}+E F^{2}=13^{2}+84^{2}$

$$
=7225
$$

Since $D F^{2}=D E^{2}+E F^{2}$,
$\therefore \triangle D E F$ is a right-angled triangle with $\angle D E F=90^{\circ}$.
(c) $H I^{2}=6.5^{2}$

$$
\begin{aligned}
&=42.25^{2} \\
& G H^{2}+G I^{2}=3.3^{2}+5.6^{2} \\
&=42.25
\end{aligned}
$$

Since $H I^{2}=G H^{2}+G I^{2}$,
$\therefore \triangle G H I$ is a right-angled triangle with $\angle H G I=90^{\circ}$.
(d) $K L^{2}=\left(2 \frac{3}{17}\right)^{2}$

$$
\begin{aligned}
&=4 \frac{213}{289} \\
& J K^{2}+J L^{2}=\left(\frac{12}{17}\right)^{2}+2^{2} \\
&=4 \frac{144}{289}
\end{aligned}
$$

Since $K L^{2} \neq J K^{2}+J L^{2}$,
$\therefore \triangle J K L$ is not a right-angled triangle.
(c)

Using Pythagoras' Theorem,

$$
\begin{aligned}
(x+13.8)^{2}+15.6^{2} & =24.9^{2} \\
(x+13.8)^{2} & =376.65 \\
x+13.8 & =\sqrt{376.65} \\
x & =\sqrt{376.65}-13.8 \\
& =5.607 \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

Using Pythagoras' Theorem,

$$
\begin{aligned}
c^{2} & =15.6^{2}+5.607^{2} \\
& =274.8 \text { (to } 4 \text { s.f.) } \\
c & =\sqrt{274.8} \\
& =16.6 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

13. Using Pythagoras' Theorem,

$$
\begin{aligned}
a^{2} & =8^{2}+9^{2} \\
& =145 \\
a & =\sqrt{145} \\
& =12.0 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Using Pythagoras’ Theorem,
$b^{2}=16^{2}+9^{2}$
$=337$
$b=\sqrt{337}$

$$
=18.4 \text { (to } 3 \text { s.f.) }
$$

$\therefore a=12.0, b=18.4$
14. (i) Using Pythagoras' Theorem,

$$
Q R^{2}+8.5^{2}=12.3^{2}
$$

$$
\begin{aligned}
Q R^{2} & =12.3^{2}-8.5^{2} \\
& =79.04 \\
Q R & =\sqrt{79.04} \\
& =8.89 \mathrm{~cm} \quad \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) Using Pythagoras' Theorem,

$$
\begin{aligned}
P S^{2}+12.3^{2} & =17.8^{2} \\
P S^{2} & =17.8^{2}-12.3^{2} \\
& =165.55 \\
P S & =\sqrt{165.55} \\
& =12.9 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(iii) Area of trapezium $P Q R S=\frac{1}{2}(8.5+17.8) \sqrt{79.04}$

$$
=117 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

15. Area of $\triangle A B C=\frac{1}{2} \times A B \times 14$

$$
\begin{aligned}
180 & =7 A B \\
A B & =\frac{180}{7} \mathrm{~cm}
\end{aligned}
$$

Using Pythagoras' Theorem,

$$
\begin{aligned}
A C^{2} & =\left(\frac{180}{7}\right)^{2}+14^{2} \\
& =857.2 \text { (to } 4 \text { s.f.) } \\
A C & =\sqrt{857.2} \\
& =29.3 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

16. Using Pythagoras' Theorem,

$$
\begin{aligned}
& B K^{2}+7^{2}=12^{2} \\
& B K^{2}=12^{2}-7^{2} \\
&=95 \\
& B K=\sqrt{95} \\
&=9.746 \mathrm{~cm} \text { (to } 4 \text { s.f.) } \\
& B C=2(9.746) \\
&= 19.49 \mathrm{~cm} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

Using Pythagoras' Theorem,

$$
\begin{aligned}
(2 x+3)^{2} & =19.49^{2}+8^{2} \\
& =444 \\
2 x+3 & =\sqrt{444} \\
& =21.07 \text { (to } 4 \text { s.f.) } \\
2 x & =18.07 \\
x & =9.04 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

17.

Using Pythagoras' Theorem,

$$
\begin{aligned}
h^{2}+8^{2} & =17^{2} \\
h^{2} & =17^{2}-8^{2} \\
& =225 \\
h & =\sqrt{225} \\
& =15
\end{aligned}
$$

Area of $\triangle A B C=\frac{1}{2}(16)(15)$

$$
=120 \mathrm{~cm}^{2}
$$

18.

Using Pythagoras' Theorem,
$x^{2}=14^{2}+27^{2}$

$$
=925
$$

$x=\sqrt{925}$
$=30.41$ (to 4 s.f.)
\therefore Perimeter $=4(30.41)$

$$
=122 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

19. Using Pythagoras' Theorem,
$P Q^{2}=(28-11)^{2}+(28-9)^{2}$

$$
=17^{2}+19^{2}
$$

$$
=650
$$

Area of $P Q R S=P Q^{2}$

$$
=650 \mathrm{~cm}^{2}
$$

20. Using Pythagoras' Theorem,
$X B^{2}+1.3^{2}=5^{2}$

$$
\begin{aligned}
X B^{2} & =5^{2}-1.3^{2} \\
& =23.31 \\
X B & =\sqrt{23.31} \\
& =4.828 \mathrm{~cm} \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

$\therefore X Y=2(4.828)$

$$
=9.66 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

21. $P(-2,-1), T(6,5)$

Using Pythagoras’ Theorem,
$P T^{2}=8^{2}+6^{2}$

$$
=100
$$

$P T=10$
\therefore The player has to run 10 units.
22. Let the height of the LCD screen be h inches.

Using Pythagoras' Theorem,

$$
\begin{aligned}
h^{2}+48.5^{2} & =55^{2} \\
h^{2} & =55^{2}-48.5^{2} \\
& =672.75 \\
h & =\sqrt{672.75} \\
& =25.9 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Since $h>24$, the box will not fit the LCD screen.
23.

Using Pythagoras' Theorem,

$$
\begin{aligned}
h^{2}+16^{2} & =20^{2} \\
h^{2} & =20^{2}-16^{2} \\
& =144
\end{aligned}
$$

Using Pythagoras' Theorem,

$$
p^{2}+144=q^{2}
$$

24. Using Pythagoras' Theorem,

$$
\begin{aligned}
(x+2)^{2}+x^{2} & =(x+4)^{2} \\
x^{2}+4 x+4+x^{2} & =x^{2}+8 x+16 \\
x^{2}-4 x-12 & =0 \\
(x-6)(x+2) & =0 \\
x & =6 \text { or } x=-2 \text { (rejected) } \\
\text { Perimeter } & =2(x+2+x) \\
& =4 x+4 \\
& =4(6)+4 \\
& =28 \mathrm{~m}
\end{aligned}
$$

25. Using Pythagoras' Theorem,

$$
\begin{aligned}
&(2 x)^{2}+(4 x-1)^{2}=(4 x+1)^{2} \\
& 4 x^{2}+16 x^{2}-8 x+1=16 x^{2}+8 x+1 \\
& 4 x^{2}-16 x=0 \\
& 4 x(x-4)=0 \\
& x=0 \quad \text { or } \quad x=4 \\
& \text { (rejected) }
\end{aligned}
$$

Cross-sectional area of sandwich $=\frac{1}{2}(8)(15)$

$$
=60 \mathrm{~cm}^{2}
$$

26.

Using Pythagoras' Theorem,

$$
\begin{aligned}
x^{2} & =140^{2}+240^{2} \\
& =77200 \\
x & =\sqrt{77200} \\
& =278 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The distance from the starting point is 278 km .
27.

$$
A B=40 \times \frac{12}{60}
$$

$$
=8 \mathrm{~km}
$$

$$
B C=15 \mathrm{~km}
$$

$$
C D=60 \times \frac{10}{60}
$$

$$
=10 \mathrm{~km}
$$

Using Pythagoras' Theorem,

$$
\begin{aligned}
D A^{2} & =15^{2}+2^{2} \\
& =229 \\
D A & =\sqrt{229} \\
& =15.1 \mathrm{~km} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The shortest distance is 15.1 km .

Advanced

28. A

Using Pythagoras’ Theorem,

$$
\begin{aligned}
Y C^{2}+\left(\frac{h}{2}\right)^{2} & =h^{2} \\
Y C^{2}+\frac{h^{2}}{4} & =h^{2} \\
Y C^{2} & =h^{2}-\frac{h^{2}}{4} \\
& =\frac{3 h^{2}}{4} \\
Y C & =\sqrt{\frac{3}{4}} h \\
& =\frac{\sqrt{3}}{2} h
\end{aligned}
$$

Using Pythagoras' Theorem,

$$
\begin{aligned}
A C^{2} & =\left(\frac{h}{2}\right)^{2}+\left(h+\frac{\sqrt{3}}{2} h\right)^{2} \\
& =0.25 h^{2}+3.482 h^{2} \\
& =3.732 h^{2} \\
A C & =\sqrt{3.732 h^{2}} \\
& =1.93 h \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

29. (a) At x-axis, $y=0$

$$
\begin{aligned}
3 x+15 & =0 \\
x & =-5
\end{aligned}
$$

At y-axis, $x=0$

$$
\begin{aligned}
y+15 & =0 \\
y & =-15
\end{aligned}
$$

\therefore The coordinates of A are $(-5,0)$ and B are $(0,-15)$.
(b) Using Pythagoras' Theorem,

$$
\begin{aligned}
A B^{2} & =5^{2}+15^{2} \\
& =250 \\
A B & =\sqrt{250} \\
& =15.8 \text { units (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The length of the line joining A to B is 15.8 units.
30. (a) $B C=23 x-2-(3 x-2)-(5 x+1)-(6 x-7)$

$$
\begin{aligned}
& =23 x-3 x-5 x-6 x-2+2-1+7 \\
& =(9 x+6) \mathrm{cm}
\end{aligned}
$$

(b) Since $B C=2 A D$,

$$
\begin{aligned}
9 x+6 & =2(5 x+1) \\
9 x+6 & =10 x+2 \\
x & =4
\end{aligned}
$$

Perimeter of trapezium $=23 x-2$

$$
\begin{aligned}
& =23(4)-2 \\
& =90 \mathrm{~cm}
\end{aligned}
$$

(c) $B X+C Y=B C-A D$

$$
\begin{aligned}
& =9(4)+6-[5(4)+1] \\
& =42-21 \\
& =21
\end{aligned}
$$

Since $5 B X=2 C Y, \frac{B X}{C Y}=\frac{2}{5}$

$$
B X=\frac{21}{7} \times 2
$$

$$
\begin{aligned}
& =6 \\
A B & =3(4)-2 \\
& =10
\end{aligned}
$$

Using Pythagoras' Theorem,

$$
\begin{aligned}
A X^{2} & =10^{2}-6^{2} \\
& =64 \\
A X & =\sqrt{64} \\
& =8 \mathrm{~cm}
\end{aligned}
$$

Area of trapezium $=\frac{1}{2} \times 8 \times(21+42)$

$$
=252 \mathrm{~cm}^{2}
$$

Chapter 8 Arc Length, Area of Sector, and Radian Measure

Basic

1. (a) (i) Perimeter $=\frac{70^{\circ}}{360^{\circ}}(2 \pi)(6)+2(6)$

$$
=19 \frac{1}{3} \mathrm{~cm}
$$

(ii) Area $=\frac{70^{\circ}}{360^{\circ}}(\pi)(6)^{2}$

$$
=22 \mathrm{~cm}^{2}
$$

(b) (i) Perimeter $=\frac{280^{\circ}}{360^{\circ}}(2 \pi)(9)+2(9)$

$$
=62 \mathrm{~cm}
$$

(ii) Area $=\frac{280^{\circ}}{360^{\circ}}(\pi)(9)^{2}$

$$
=198 \mathrm{~cm}^{2}
$$

(c) (i) Perimeter $=\frac{360^{\circ}-36^{\circ}}{360^{\circ}}(2 \pi)(35)+2(35)$

$$
=268 \mathrm{~cm}
$$

(ii) Area $=\frac{360^{\circ}-36^{\circ}}{360^{\circ}}(\pi)(35)^{2}$

$$
=3465 \mathrm{~cm}^{2}
$$

2. (a) Area of sector $=25.5 \mathrm{~m}^{2}$

$$
\begin{aligned}
\frac{\theta}{360}(\pi)(8)^{2} & =25.5 \\
\theta & =45.7 \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(b) Area of sector $=6.6 \mathrm{~m}^{2}$

$$
\begin{aligned}
\frac{\theta}{360}(\pi)(8)^{2} & =6.6 \\
\theta & =11.8 \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

(c) Area of sector $=8 \mathrm{~m}^{2}$

$$
\begin{aligned}
\frac{\theta}{360}(\pi)(8)^{2} & =8 \\
\theta & =14.3 \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

3. (a) Perimeter $=\frac{30^{\circ}}{360^{\circ}}(2 \pi)(20)+\frac{30^{\circ}}{360^{\circ}}(2 \pi)(30)+2(10)$

$$
=46.2 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

$$
\begin{aligned}
\text { Area } & =\frac{30^{\circ}}{360^{\circ}}(\pi)(30)^{2}-\frac{30^{\circ}}{360^{\circ}}(\pi)(20)^{2} \\
& =131 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(b) Perimeter $=\frac{120^{\circ}}{360^{\circ}}(2 \pi)(21)^{2}+\frac{120^{\circ}}{360^{\circ}}(2 \pi)(11)+2(10)$

$$
=87.0 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
$$

$$
\begin{aligned}
\text { Area } & =\frac{120^{\circ}}{360^{\circ}}(\pi)(21)^{2}-\frac{120^{\circ}}{360^{\circ}}(\pi)(11)^{2} \\
& =335 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Intermediate

4. (i) Perimeter $=\frac{50^{\circ}}{360^{\circ}}(2 \pi)(20)+\frac{50^{\circ}}{360^{\circ}}(2 \pi)(36)+2(16)$

$$
=80.9 \mathrm{~m} \text { (to } 3 \text { s.f.) }
$$

(ii) Using Cosine Rule,

$$
\begin{aligned}
A C^{2} & =20^{2}+36^{2}-2(20)(36) \cos 50^{\circ} \\
A C & =27.8 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

5. (i) Circumference of circle $=35.2+52.8$

$$
=88 \mathrm{~cm}
$$

Let the radius of the circle be $r \mathrm{~cm}$.

$$
\begin{aligned}
2 \pi r & =88 \\
r & =14.0 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Radius of circle is 14.0 cm .
(ii) Let the angle subtended at the centre of the circle be $\theta \mathrm{rad}$.

$$
\begin{aligned}
\theta & =\frac{35.2}{14.00} \\
& =2.51 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore Angle subtended is 2.51 rad .
6. (a) Time taken $=\frac{156^{\circ}}{360^{\circ}} \times 60$

$$
=26 \text { minutes }
$$

(b) (i) Distance moved $=\frac{12}{60}(\pi)(42)$

$$
=26.4 \mathrm{~cm}
$$

(ii) Distance moved $=\frac{45}{60}(\pi)(42)$

$$
=99 \mathrm{~cm}
$$

7. Total area $=\frac{120^{\circ}}{360^{\circ}}(\pi)(10)^{2}-\frac{120^{\circ}}{360^{\circ}}(\pi)(6)^{2}$

$$
\begin{aligned}
& +\frac{360^{\circ}-120^{\circ}}{360^{\circ}}(\pi)(6)^{2} \\
= & 142 \mathrm{~cm}^{2}\left(\text { to the nearest } \mathrm{cm}^{2}\right)
\end{aligned}
$$

Advanced

8. (i) $r \theta+2 r=4$

$$
\begin{aligned}
r \theta & =4-2 r \\
\theta & =\left(\frac{4}{r}-2\right)
\end{aligned}
$$

(ii) Area $=\frac{1}{2} r^{2} \theta$

$$
\begin{aligned}
& =\frac{1}{2} r^{2}\left(\frac{4}{r}-2\right) \\
& =2 r-r^{2}
\end{aligned}
$$

Let $A=2 r-r^{2}$

$$
=r(2-r)
$$

When the area is a maximum, $r=1$.
(iii) When $r=1$,

$$
\begin{aligned}
& \text { Area }=1(2-1) \\
& =1 \mathrm{~m}^{2} \\
& \theta=\frac{4}{1}-2 \\
& =2 \mathrm{rad}
\end{aligned}
$$

New Trend

9. (i) $(2 d) \theta=20$

$$
\theta=\frac{10}{d}
$$

(ii) Area of $R_{1}=\frac{1}{2}(2 d)^{2} \theta$

$$
=2 d^{2} \theta \mathrm{~cm}^{2}
$$

Area of $R_{2}=6 d^{2} \theta \mathrm{~cm}^{2}$

$$
\begin{aligned}
\frac{1}{2}(O D)^{2} \theta & =6 d^{2} \theta+2 d^{2} \theta \\
O D^{2} & =16 d^{2} \\
O D & =4 d \mathrm{~cm}
\end{aligned}
$$

10. (a) Volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
34 & =\frac{4}{3} \pi r^{3} \\
r^{3} & =\frac{51}{2 \pi} \\
r & =\sqrt[3]{\frac{51}{2 \pi}} \\
& =2.009 \text { (to } 4 \text { s.f.) } \\
& =2.01 \mathrm{~cm} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Surface area of sphere $=4 \pi(2.009)^{2}$

$$
=50.8 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(b) Volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
68.2 & =\frac{4}{3} \pi r^{3} \\
r^{3} & =\frac{51.15}{\pi} \\
r & =\sqrt[3]{\frac{51.15}{\pi}} \\
& =2.534 \text { (to } 4 \text { s.f.) } \\
& =2.53 \mathrm{~m} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Surface area of sphere $=4 \pi(2.534)^{2}$

$$
=80.7 \mathrm{~m}^{2} \text { (to } 3 \text { s.f.) }
$$

11. Surface area of sphere $=4 \pi(8)^{2}$

$$
=256 \pi \mathrm{~m}^{2}
$$

Cost of painting $=\frac{256 \pi}{8} \times 8.5$

$$
=\text { PKR } 854.51 \text { (to } 2 \text { d.p.) }
$$

Intermediate

12. Let the height and the slant height of the pyramid be $h \mathrm{~cm}$ and $l \mathrm{~cm}$ respectively.
Total surface area of pyramid $=8^{2}+4 \times \frac{1}{2}(8) l$

$$
\begin{aligned}
144 & =64+16 l \\
16 l & =80 \\
l & =5
\end{aligned}
$$

Using Pythagoras' Theorem,
$4^{2}+h^{2}=5^{2}$
$16+h^{2}=25$
$h^{2}=9$

$$
h=3
$$

\therefore Volume of pyramid $=\frac{1}{3} \times 8^{2} \times 3$

$$
=64 \mathrm{~cm}^{3}
$$

13. (i) Let the radius of the base be $r \mathrm{~m}$.

$$
\begin{aligned}
2 \pi r & =8.5 \\
r & =\frac{4.25}{\pi} \\
& =1.352 \text { (to } 4 \text { s.f) }
\end{aligned}
$$

$$
\text { Volume of rice }=\frac{1}{3} \pi(1.352)^{2}(1.2)
$$

$$
\begin{aligned}
& =2.29 \text { (to } 3 \text { s.f.) } \\
& =2.3 \mathrm{~m}^{3} \text { (to } 2 \text { s.f.) }
\end{aligned}
$$

(ii) Number of bags $=\frac{2.29}{0.5}$

$$
\begin{aligned}
& =4.59(\text { to } 3 \text { s.f. }) \\
& \approx 5
\end{aligned}
$$

Assume that the space between the grains of rice is negligible.
14. Volume of crew cabin
$=\frac{1}{3} \pi\left(\frac{75}{2}\right)^{2}(92)-\frac{1}{3} \pi\left(\frac{27}{2}\right)^{2}(92-59)$
$=129000 \mathrm{~cm}^{3}$ (to 3 s.f.)
15. (i) Let the radius of the base be $r \mathrm{~cm}$.

$$
\begin{aligned}
2 \pi r & =88 \\
r & =\frac{44}{\pi} \\
& =14.00 \quad \text { (to } 4 \text { s.f.) }
\end{aligned}
$$

Curved surface area of cone $=\pi\left(\frac{44}{\pi}\right)(15)$

$$
=660 \mathrm{~cm}^{2}
$$

(ii) Total surface area of cone
$=660+\pi(14.00)^{2}$
$=1276 \mathrm{~cm}^{2}$ (to the nearest integer)
16. (i) Curved surface area of cone $=\pi(x-5)(x+5)$

$$
\begin{aligned}
75 \pi & =\pi\left(x^{2}-25\right) \\
75 & =x^{2}-25 \\
x^{2} & =100 \\
x & =10
\end{aligned}
$$

(ii) Base radius $=5 \mathrm{~cm}$

Slant height $=15 \mathrm{~cm}$
Height $=\sqrt{15^{2}-5^{2}}$

$$
=\sqrt{200}
$$

\therefore Volume of cone $=\frac{1}{3} \pi(5)^{2}(\sqrt{200})$

$$
=370 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

Chapter 9 Volume and Surface Area of Pyramids, Cones and Spheres

Basic

1. (a) Volume of pyramid $=\frac{1}{3} \times 16^{2} \times 27$

$$
=2304 \mathrm{~cm}^{3}
$$

(b) Volume of pyramid $=\frac{1}{3} \times\left(\frac{1}{2} \times 12 \times 9\right) \times 20$

$$
=360 \mathrm{~cm}^{3}
$$

(c) Volume of pyramid $=\frac{1}{3} \times 9 \times 5 \times 3$

$$
=45 \mathrm{~m}^{3}
$$

2. Volume of pyramid $=\frac{1}{3} \times 8 \times h$

$$
\begin{aligned}
42 & =\frac{8}{3} h \\
h & =15.75
\end{aligned}
$$

\therefore The height of the figurine is 15.75 cm .
3. Volume of pyramid $=\frac{1}{3} \times 8 \times 3 \times h$

$$
\begin{aligned}
86 & =8 h \\
h & =10.75
\end{aligned}
$$

\therefore The height of the pyramid is 10.75 m .
4. Volume of pyramid $=\frac{1}{3} \times\left(\frac{1}{2} \times 12 \times 5\right) \times h$

$$
\begin{aligned}
160 & =10 h \\
h & =16
\end{aligned}
$$

\therefore The height of the pyramid is 16 m .
5. Total surface area $=16^{2}+4 \times \frac{1}{2} \times 16 \times 17$

$$
=800 \mathrm{~m}^{2}
$$

6. $V=\frac{1}{3} \pi r^{2} h$
(a) When $r=8$ and $V=320$,

$$
\begin{aligned}
320 & =\frac{1}{3} \pi(8)^{2} h \\
h & =\frac{960}{64 \pi} \\
& =4.77 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(b) When $r=10.6$ and $V=342.8$,

$$
\begin{aligned}
342.8 & =\frac{1}{3} \pi(10.6)^{2} h \\
h & =\frac{1028.4}{112.36 \pi} \\
& =2.91 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(c) When $h=6$ and $V=254$,

$$
\begin{aligned}
254 & =\frac{1}{3} \pi r^{2}(6) \\
r^{2} & =\frac{762}{6 \pi} \\
r & =\sqrt{\frac{762}{6 \pi}} \\
& =6.36 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(d) When $h=11$ and $V=695$,

$$
\begin{aligned}
695 & =\frac{1}{3} \pi r^{2}(11) \\
r^{2} & =\frac{2085}{11 \pi} \\
r & =\sqrt{\frac{2085}{11 \pi}} \\
& =7.77 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

	Radius, $r \mathrm{~cm}$	Height, $h \mathrm{~cm}$	Volume, $V \mathrm{~cm}^{3}$
(a)	8	4.77	320
(b)	10.6	2.91	342.8
(c)	6.36	6	254
(d)	7.77	11	695

7. (a) Volume of cone $=\frac{1}{3} \pi(6)^{2}(8)$

$$
=302 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

Total surface area of cone $=\pi(6)^{2}+\pi(6)(10)$

$$
=302 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

(b) Volume of cone $=\frac{1}{3} \pi(12)^{2}(28.8)$

$$
=4340 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

Total surface area of cone $=\pi(12)^{2}+\pi(12)(31.2)$

$$
=1630 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

8. (a) Volume of sphere $=\frac{4}{3} \pi(5.8)^{3}$

$$
=817 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

(b) Volume of sphere $=\frac{4}{3} \pi(12.6)^{3}$

$$
=8380 \mathrm{~m}^{3} \text { (to } 3 \text { s.f.) }
$$

9. (a) Volume of sphere $=\frac{4}{3} \pi\left(\frac{24.2}{2}\right)^{3}$

$$
=7420 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

(b) Volume of sphere $=\frac{4}{3} \pi\left(\frac{6.25}{2}\right)^{3}$

$$
=128 \mathrm{~mm}^{3} \text { (to } 3 \text { s.f.) }
$$

17. (i) Volume of solid $=\frac{2}{3} \pi h^{3}-\frac{2}{3} \pi\left(\frac{h}{2}\right)^{3}$

$$
\begin{aligned}
& =\frac{2}{3} \pi h^{3}-\frac{1}{12} \pi h^{3} \\
& =\frac{7}{12} \pi h^{3}
\end{aligned}
$$

(ii) Total surface area of solid

$$
\begin{aligned}
& =2 \pi h^{2}+\left[\pi h^{2}-\pi\left(\frac{h}{2}\right)^{2}\right]+2 \pi\left(\frac{h}{2}\right)^{2} \\
& =2 \pi h^{2}+\pi h^{2}-\frac{1}{4} \pi h^{2}+\frac{1}{2} \pi h^{2} \\
& =\frac{13}{4} \pi h^{2}
\end{aligned}
$$

18. Volume of plastic $=\frac{4}{3} \pi(4)^{3}-\frac{4}{3} \pi(3.6)^{3}$

$$
=72.7 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

19. Volume of steel
$=100 \times\left[\frac{4}{3} \pi\left(\frac{16}{2}\right)^{3}-\frac{4}{3} \pi\left(\frac{16}{2}-0.8\right)^{3}\right]$
$=58100 \mathrm{~cm}^{3}$ (to 3 s.f.)
20. Amount of space $=6^{3}-\frac{4}{3} \pi\left(\frac{6}{2}\right)^{3}$

$$
=103 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

21. (a) Total surface area of hemisphere $=2 \pi r^{2}+\pi r^{2}$

$$
\begin{aligned}
374 & =3 \pi r^{2} \\
r^{2} & =\frac{374}{3 \pi} \\
r & =\sqrt{\frac{374}{3 \pi}} \\
& =6.3 \mathrm{~cm} \text { (to } 1 \mathrm{~d} . \mathrm{p} .)
\end{aligned}
$$

Volume of hemisphere $=\frac{2}{3} \pi\left(\sqrt{\frac{374}{3 \pi}}\right)^{3}$

$$
=523.6 \mathrm{~cm}^{3} \text { (to } 1 \text { d.p.) }
$$

(b) Total surface area of hemisphere $=2 \pi r^{2}+\pi r^{2}$

$$
\begin{aligned}
1058.4 & =3 \pi r^{2} \\
r^{2} & =\frac{352.8}{\pi} \\
r & =\sqrt{\frac{352.8}{\pi}} \\
& =10.6 \mathrm{~m} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

Volume of hemisphere $=\frac{2}{3} \pi\left(\sqrt{\frac{352.8}{\pi}}\right)^{3}$

$$
=2492.5 \mathrm{~m}^{3} \text { (to } 1 \text { d.p.) }
$$

22. (i) Volume of sphere $=\frac{4}{3} \pi\left(\frac{x+2}{2}\right)^{3}$

$$
\begin{aligned}
972 \pi & =\frac{4}{3} \pi\left(\frac{x+2}{2}\right)^{3} \\
\left(\frac{x+2}{2}\right)^{3} & =729 \\
\frac{x+2}{2} & =9 \\
x+2 & =18 \\
x & =16
\end{aligned}
$$

(ii) Surface area of sphere $=4 \pi\left(\frac{18}{2}\right)^{2}$

$$
=1020 \mathrm{~cm}^{2} \text { (to } 3 \text { s.f.) }
$$

23. Volume of glass
$=$ volume of prism + volume of pyramid

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 3.6 \times 4.8\right)(6)+\frac{1}{3}\left(\frac{1}{2} \times 3.6 \times 4.8\right)(12) \\
& =86.4 \mathrm{~m}^{3}
\end{aligned}
$$

24. Volume of hemisphere $=\frac{2}{3} \pi(4)^{3}$

$$
=\frac{128}{3} \pi \mathrm{~cm}^{3}
$$

\therefore Volume of model $=\frac{37}{4} \times \frac{128}{3} \pi$

$$
=1240 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

25. (i) Capacity of container $=\frac{1}{3} \pi(21)^{2}(21)$

$$
\begin{aligned}
& =9698 \mathrm{~cm}^{3} \quad \text { (to } 4 \text { s.f.) } \\
& =9.70 l \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) Mass of container $=9698 \times 1.5$

$$
\begin{aligned}
& =14540 \mathrm{~g} \text { (to } 4 \text { s.f.) } \\
& =15 \mathrm{~kg} \text { (to the nearest } \mathrm{kg} \text {) }
\end{aligned}
$$

Advanced

26. (i) Volume of iron $=\frac{1}{3} \pi(1)^{2}(0.5)$

$$
\begin{aligned}
& =\frac{\pi}{6} \\
& =0.524 \mathrm{~m}^{3} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

Volume of lead $=\pi(2)^{2}(3)-\frac{\pi}{6}$

$$
=12 \pi-\frac{\pi}{6}
$$

$$
=\frac{71 \pi}{6}
$$

$$
=37.2 \mathrm{~m}^{3} \text { (to } 3 \text { s.f.) }
$$

(ii) Let the denisty of lead be $\rho \mathrm{g} / \mathrm{m}^{3}$.

Original mass of cylinder $=\pi(2)^{2}(3) \rho$

$$
=12 \pi \rho g
$$

New mass of cylinder $=\frac{\pi}{6}\left(\frac{2}{3} \rho\right)+\frac{71 \pi}{6}(\rho)$

$$
\begin{aligned}
& =\frac{\pi}{9} \rho+\frac{71 \pi}{6} \rho \\
& =\frac{215 \pi}{18} \rho g
\end{aligned}
$$

\therefore Percentage reduction in mass

$$
\begin{aligned}
& =\frac{12 \pi \rho-\frac{215 \pi}{18} \rho}{12 \pi \rho} \times 100 \% \\
& =\frac{25}{54} \%
\end{aligned}
$$

27.

Using Pythagoras' Theorem,

$$
\begin{aligned}
& A C^{2}=20^{2}+18^{2} \\
&=724 \\
& A C=\sqrt{724} \mathrm{~cm} \\
& \tan 50^{\circ}=\frac{A X}{O X}
\end{aligned}
$$

$$
\begin{aligned}
O X & =\frac{A X}{\tan 50^{\circ}} \\
& =\frac{\frac{1}{2} \sqrt{724}}{\tan 50^{\circ}}
\end{aligned}
$$

\therefore Volume of pyramid $=\frac{1}{3}(20 \times 18)\left(\frac{\frac{1}{2} \sqrt{724}}{\tan 50^{\circ}}\right)$

$$
=1350 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

New Trend

28. (a) Using Pythagoras' Theorem,

$$
\begin{aligned}
h^{2}+8^{2} & =17^{2} \\
h^{2} & =225 \\
h & =\sqrt{225} \\
& =15
\end{aligned}
$$

\therefore The height of the cone is 15 cm . (shown)
(b) Volume of solid
$=$ volume of cone + volume of hemisphere
$=\frac{1}{3} \pi(8)^{2}(15)+\frac{1}{2}\left[\frac{4}{3} \pi(8)^{3}\right]$
$=2080 \mathrm{~cm}^{3}$ (to 3 s.f.)
29. Total surface area of solid $=\frac{1}{2}(4 \pi x)^{2}+2 \pi x(3 x)+\pi x^{2}$

$$
\begin{aligned}
& =2 \pi x^{2}+6 \pi x^{2}+\pi x^{2} \\
& =9 \pi x^{2}
\end{aligned}
$$

Total surface area of solid $=2 \times$ surface area of cone

$$
\begin{aligned}
9 \pi x^{2} & =2\left(\pi x l+\pi x^{2}\right) \\
7 \pi x^{2} & =2 \pi x l \\
l & =\frac{7 \pi x^{2}}{2 \pi x} \\
& =\frac{7 x}{2}
\end{aligned}
$$

30. (a) Let the height of the pyramid be $h \mathrm{~cm}$.

Using Pythagoras' Theorem,

$$
\begin{aligned}
h^{2}+15^{2} & =39^{2} \\
h^{2} & =1296 \\
h & =\sqrt{1296} \\
& =36
\end{aligned}
$$

Volume of solid $=(30)(30)(70)+\frac{1}{3}(30)^{2}(36)$

$$
=73800 \mathrm{~cm}^{3}
$$

(b) Volume of spherical candle $=\frac{1}{10} \times 73800$

$$
\begin{aligned}
\frac{4}{3} \pi r^{3}= & 7380 \\
r^{3}= & \frac{7380 \times 3}{4 \pi} \\
r= & \sqrt[3]{\frac{7380 \times 3}{4 \pi}} \\
= & 12.078 \mathrm{~cm} \text { (to } 5 \text { s.f.) } \\
= & 12.1 \mathrm{~cm} \text { (to } 3 \text { s.f.) } \\
& \text { (shown) }
\end{aligned}
$$

(c) Volume of cuboid

$$
\begin{aligned}
& =4(12.078) \times 2(12.078) \times 2(12.078) \\
& =28191 \mathrm{~cm}^{3}(\text { to } 5 \text { s.f. })
\end{aligned}
$$

$$
\text { Volume of empty space }=28191-2(7380)
$$

$$
=13400 \mathrm{~cm}^{3} \text { (to } 3 \text { s.f.) }
$$

31. Total surface area $=\pi(4 r)^{2}+2(2 \pi r)(3 r)+\frac{1}{2}\left[4 \pi(4 r)^{2}\right]$

$$
\begin{aligned}
& =16 \pi r^{2}+12 \pi r^{2}+32 \pi r^{2} \\
& =60 \pi r^{2} \mathrm{~cm}^{2}
\end{aligned}
$$

32. (i) Using Pythagoras' Theorem,

$$
\begin{aligned}
x^{2} & =(15-9)^{2}+16^{2} \\
x^{2} & =292 \\
x & =\sqrt{292} \\
& =17.088 \text { (to } 5 \text { s.f.) } \\
& =17.09 \mathrm{~cm} \text { (to } 4 \text { s.f.) (shown) }
\end{aligned}
$$

(ii) Let the slant height of the cone with radius 9 cm be $l \mathrm{~cm}$.
Using Pythagoras' Theorem,

$$
\begin{aligned}
l^{2} & =(40-16)^{2}+9^{2} \\
l^{2} & =657 \\
l & =\sqrt{657} \\
& =25.63 \mathrm{~cm}(\text { to } 2 \mathrm{d.p.})
\end{aligned}
$$

Total surface area of vase
$=\pi(15)(17.088+25.63)-\pi(9)(25.63)+\pi(15)^{2}$
$=1995 \mathrm{~cm}^{2}$ (to the nearest whole number)

Chapter 9 Congruence and Similarity Tests

Basic

1. (a) $A B=Z Y$
$B C=Y X$
$A C=Z X$
$\therefore \triangle A B C \equiv \triangle Z Y X$ (SSS)
(b) $P Q=L M$
$\angle Q P R=\angle M L N$
$\angle P R Q=\angle L N M$
$\therefore \triangle P Q R \equiv \triangle L M N(\mathrm{AAS})$
(c) $A B=X Y$
$A C=X Z$
$\angle B A C=\angle Y X Z$
$\therefore \triangle A B C \equiv \triangle X Y Z(\mathrm{SAS})$
(d) $T P=S R$
$T Q=S Q$
$P Q=R Q$
$\therefore \triangle T P Q \equiv \triangle S R Q(\mathrm{SSS})$
(e) $\angle C A B=\angle C B A$ (base $\angle \mathrm{s}$ of isos. \triangle)
$\angle F E D=\angle F D E$ (base $\angle \mathrm{s}$ of isos. \triangle)
$\angle C A B=\angle F E D$
$\angle C B A=\angle F D E$

$$
C A=F E
$$

$\therefore \triangle C A B \equiv \triangle F E D(\mathrm{AAS})$
(f) $M L=P Q$
$M O=P O$
$\angle L M O=\angle Q P O$
$\therefore \triangle M L O \equiv \triangle P Q O$ (SAS)
(g) $A B=E D$
$A C=E C$
$\angle A C B=\angle E C D$, which is not the included angle.
\therefore The triangles may not be congruent.
(h) $P Q=P S$
$Q R=S R$
$P R$ is a common side.
$\therefore \triangle P Q R \equiv \triangle P S R$ (SSS)
(i) $\quad O L=O P$
$\angle O L M=\angle O P Q$
$\angle L O M=\angle P O Q$
$\therefore \triangle O L M \equiv \triangle O P Q(\mathrm{AAS})$
(j) $A B=C B$
$B D$ is a common side.
$\angle B A D=\angle B C D=90^{\circ}$
$\therefore \triangle A B D \equiv \triangle C B D$ (RHS)
(k) $\quad P Q=A B$
$\angle O P Q=\angle O A B$ (alt. $\angle \mathrm{s}, Q P / / A B)$
$\angle P O Q=\angle A O B$ (vert. opp. $\angle \mathrm{s}$)
$\therefore \triangle O P Q \equiv \triangle O A B(\mathrm{AAS})$
(l) $B C=E F$
$\angle B A C=\angle E D F$
$\angle B C A=\angle E F D$
$\therefore \triangle A B C \equiv \triangle D E F(\mathrm{AAS})$
2. (a) $\angle B A C=\angle Z X Y$
$\angle A C B=\angle X Y Z$
$\therefore \triangle A B C$ is similar to $\triangle X Z Y$
(2 pairs of corr. $\angle \mathrm{s}$ equal).
(b) $\angle A B C=180^{\circ}-90^{\circ}-30^{\circ}(\angle$ sum of a $\triangle)$
$=60^{\circ}$
$\angle A B C=\angle Y Z X$
$\angle C A B=\angle X Y Z$
$\therefore \triangle A B C$ is similar to $\triangle Y Z X$
(2 pairs of corr. $\angle \mathrm{s}$ equal).
(c) $\frac{A C}{Z X}=\frac{13}{13}=1$
$\frac{A B}{Z Y}=\frac{13}{12}$
$\frac{B C}{Y X}=\frac{5}{10}=\frac{1}{2}$
Since the ratios of the corresponding sides are not equal, the triangles are not similar.
(d) $\frac{A B}{X Y}=\frac{14}{7}=2$
$\frac{B C}{Y Z}=\frac{6}{2}=3$
Since the ratios of the corresponding sides are not equal, the triangles are not similar.
3. Let the height of the lamp post be $h \mathrm{~m}$.

Using similar triangles,

$$
\begin{aligned}
\frac{h}{1.7} & =\frac{2.3+1.7}{1.7} \\
& =\frac{4.0}{1.7} \\
h & =4.0
\end{aligned}
$$

\therefore Height of lamp post is 4.0 m .

Intermediate

4. (a) $\triangle A P D \equiv \triangle D S C \equiv \triangle B Q A \equiv \triangle C R B$
(b) $\triangle A Q P \equiv \triangle B S R$ $\triangle A Q R \equiv \triangle B S P$ $\triangle A B P \equiv \triangle A B R$
(c) $\triangle R S X \equiv \triangle R Q X$ $\triangle P S X \equiv \triangle P Q X$ $\triangle P S R \equiv \triangle P Q R$
(d) $\triangle P Q T \equiv \triangle S R T$
5. $\angle E A B=\angle E D C$ (base $\angle \mathrm{s}$ of isos. \triangle)
$\angle E B A=\angle E C D($ adj. $\angle \mathrm{s}$. on a str. line $)$

$$
E A=E D
$$

$\therefore \triangle E A B \equiv \triangle E D C(\mathrm{AAS})$
6. $\angle A B E+\angle E B D=\angle E B D+\angle D B C$
i.e. $\angle A B D=\angle C B E$

$$
\angle A D B=\angle C E B
$$

$$
A B=C B
$$

$\therefore \triangle A B D \equiv \triangle C B E(\mathrm{AAS})$
7. (a) $\triangle A Q R$
(b) $\triangle A S P$
8. $\triangle Q Z S$ and $\triangle Y Z X$
9. (a) $\triangle C A X$
(b) $\triangle E Y Z$
10. (a) (i) $\triangle D X C$
(ii) $\triangle C D B$
(b) $\triangle D X A$
11. (a) $\triangle T S R$

Using similar triangles,

$$
\begin{aligned}
\frac{x}{18} & =\frac{5}{9} \\
x & =\frac{5}{9} \times 18 \\
& =10 \\
\frac{y}{6} & =\frac{9}{5} \\
y & =\frac{9}{5} \times 6 \\
& =10.8
\end{aligned}
$$

(b) $\triangle A B R$

Using similar triangles,

$$
\begin{aligned}
\frac{x+5}{5} & =\frac{6}{2} \\
x+5 & =\frac{6}{2} \times 5 \\
& =15 \\
x & =10 \\
\frac{y+4}{4} & =\frac{6}{2} \\
y+4 & =\frac{6}{2} \times 4 \\
& =12 \\
y & =8
\end{aligned}
$$

(c) $\triangle Q A R$

Using similar triangles,

$$
\begin{aligned}
\frac{x+12}{15} & =\frac{15}{12} \\
x+12 & =\frac{15}{12} \times 15 \\
& =18 \frac{3}{4} \\
x & =6 \frac{3}{4} \\
\frac{y}{9} & =\frac{15}{12} \\
y & =\frac{15}{12} \times 9 \\
& =11 \frac{1}{4}
\end{aligned}
$$

(d) $\triangle P X Q$

Using similar triangles,

$$
\begin{aligned}
\frac{x}{12} & =\frac{12}{18} \\
x & =\frac{12}{18} \times 12 \\
& =8 \\
\frac{y}{10} & =\frac{18}{12} \\
y & =\frac{18}{12} \times 10 \\
& =15
\end{aligned}
$$

(e) $\triangle A R B$

Using similar triangles,

$$
\begin{aligned}
\frac{x}{6} & =\frac{15}{12} \\
x & =\frac{15}{12} \times 6 \\
& =7 \frac{1}{2} \\
\frac{y}{10} & =\frac{12}{15} \\
y & =\frac{12}{15} \times 10 \\
& =8
\end{aligned}
$$

(f) $\triangle M L R$

Using similar triangles,

$$
\begin{aligned}
\frac{x}{12-x} & =\frac{6}{9} \\
9 x & =72-6 x \\
15 x & =72 \\
x & =4 \frac{4}{5}
\end{aligned}
$$

12.

Let the horizontal distance between the lizard and the wall be $x \mathrm{~m}$.

Using similar triangles,

$$
\begin{aligned}
\frac{x}{4} & =\frac{4}{6} \\
x & =\frac{4}{6} \times 4 \\
& =2 \frac{2}{3}
\end{aligned}
$$

\therefore Horizontal distance is $2 \frac{2}{3} \mathrm{~m}$.
13. (i) $\angle P Q R=\angle P X Z$ (corr. $\angle \mathrm{s}, Q R / / X Z)$
$\angle P Q R=\angle X Q Y($ common $\angle)$
$\angle Q P R=\angle Q X Y($ corr. $\angle \mathrm{s} . P R / / X Y)$
$\angle Q P R=\angle X P Z($ common $\angle)$
$\therefore \triangle P Q R, \triangle P X Z$ and $\triangle X Q Y$ are similar (2 pairs of corr. \angle s equal).
(ii) Using similar triangles,

$$
\begin{aligned}
\frac{X Y}{P R} & =\frac{Q Y}{Q R} \\
\frac{X Y}{8.5} & =\frac{Q R-X Z}{6.75} \\
\frac{X Y}{8.5} & =\frac{6.75-3}{6.75} \\
X Y & =4.72 \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

\therefore The length of $X Y$ is 4.72 cm .
14.

Using similar triangles,

$$
\begin{aligned}
\frac{x}{2.4} & =\frac{6}{2.7} \\
x & =\frac{6}{2.7} \times 2.4 \\
& =5 \frac{1}{3}
\end{aligned}
$$

15. $7 O P=5 P Q$
$\frac{O P}{P Q}=\frac{5}{7}$
$\frac{O P}{O Q}=\frac{5}{12}$
$\frac{Q B}{P A}=\frac{12}{5}$
$\therefore Q B: P A=12: 5$
16. $\triangle A B C$ is similar to $\triangle C D E$.

$$
\begin{aligned}
\frac{B C}{12-B C} & =\frac{5}{7} \\
7 B C & =60-5 B C \\
12 B C & =60 \\
B C & =5 \mathrm{~cm}
\end{aligned}
$$

17. $\triangle L M N$ is similar to $\triangle L C B$.
$\frac{B C}{6}=\frac{10}{4}$

$$
\begin{aligned}
B C & =\frac{10}{4} \times 6 \\
& =15 \mathrm{~cm}
\end{aligned}
$$

$\triangle A M N$ is similar to $\triangle A B C$.
$\frac{A M}{A M+10}=\frac{6}{15}$
$15 A M=6 A M+60$
$9 A M=60$
$A M=6 \frac{2}{3} \mathrm{~cm}$
18. (i) $\angle S Q T=\angle R P T$ (given)
$\angle S T Q=\angle R T P($ common \angle)
$\therefore \triangle S Q T$ is similar to $\triangle R P T$ (2 pairs of corr. \angle s equal).
(ii) Using similar triangles,

$$
\begin{aligned}
\frac{Q S}{9} & =\frac{7}{6} \\
Q S & =\frac{7}{6} \times 9 \\
& =10.5 \mathrm{~cm}
\end{aligned}
$$

19. (a) $\angle B A C=\angle C B D$ (given)
$\angle A B C=\angle B C D($ alt. $\angle \mathrm{s}, A B / / C D)$
$\therefore \triangle A B C$ is similar to $\triangle B C D$ (2 pairs of corr. $\angle \mathrm{s}$ equal).
(b) (i) Using similar triangles,

$$
\text { (ii) } \begin{aligned}
\frac{B C}{9} & =\frac{16}{B C} \\
B C^{2} & =144 \\
B C & =12 \mathrm{~cm} \\
B D & =\frac{9}{12} \\
& =\frac{3}{4}
\end{aligned}
$$

20. (i) $\angle P S Q=\angle P Q R$ (given)
$\angle Q P S=\angle R P Q$ (common \angle)
$\therefore \triangle P S Q$ is similar to $\triangle P Q R$ (2 pairs of corr. \angle s equal).
(ii) Using similar triangles,

$$
\begin{array}{r}
\frac{P Q}{9+16}=\frac{9}{P Q} \\
P Q^{2}=225
\end{array}
$$

$$
P Q=15 \mathrm{~cm}
$$

21. $\triangle A X Z$ is similar to $\triangle B Y Z$.
$\frac{Y Z}{Y Z+10}=\frac{4}{6}$

$$
\begin{aligned}
6 Y Z & =4 Y Z+40 \\
2 Y Z & =40 \\
Y Z & =20 \mathrm{~cm}
\end{aligned}
$$

22. (a) $\triangle Z A B$ is similar to $\triangle Z Y X$.

Using similar triangles,

$$
\begin{aligned}
\frac{B Z}{3 \frac{1}{2}} & =\frac{6}{3} \\
B Z & =\frac{6}{3} \times 3 \frac{1}{2} \\
& =7 \mathrm{~cm}
\end{aligned}
$$

(b) $\triangle Z X Y$ is similar to $\triangle Z Q R$.

Using similar triangles,

$$
\begin{aligned}
\frac{Y Z}{Y Z+16} & =\frac{3}{11} \\
11 Y Z & =3 Y Z+48 \\
8 Y Z & =48 \\
Y Z & =6 \mathrm{~cm}
\end{aligned}
$$

23. $\triangle Z X Y$ is similar to $\triangle Z C B$.

Using similar triangles,

$$
\begin{aligned}
\frac{B C}{2.8} & =\frac{2}{1.4} \\
B C & =\frac{2}{1.4} \times 2.8 \\
& =4 \mathrm{~m}
\end{aligned}
$$

$\triangle A X Y$ is similar to $\triangle A B C$.

$$
\begin{aligned}
& \frac{Y C+3.2}{3.2}=\frac{4}{2.8} \\
& Y C+3.2=\frac{4}{2.8} \times 3.2 \\
& Y C=1.37 \mathrm{~m} \text { (to } 3 \text { s.f.) } \\
& \frac{C Z}{1.2}=\frac{2}{1.4} \\
& C Z=\frac{2}{1.4} \times 1.2 \\
&= 1.71 \mathrm{~m}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

Advanced

24. $\triangle M Q P$ is similar to $\triangle M R S$.

$$
\begin{aligned}
\frac{Q P}{R S} & =\frac{6}{10} \\
& =\frac{3}{5}
\end{aligned}
$$

$\triangle P M L$ is similar to $\triangle P S R$.

$$
P M: M S
$$

$$
3: 5
$$

$\therefore P M: P S$
3:8
$\frac{P M}{P S}=\frac{L M}{R S}$
$\frac{3}{8}=\frac{L M}{10}$
$L M=\frac{3 \times 10}{8}$
$=3.75 \mathrm{~cm}$
25. $\triangle P Q R$ is similar to $\triangle Y X R$.

$$
\begin{aligned}
\frac{2 x-y}{7} & =\frac{2 x+3 y}{9} \\
18 x-9 y & =14 x+21 y \\
4 x & =30 y \\
\frac{x}{y} & =\frac{15}{2} \\
\therefore x: y= & 15: 2
\end{aligned}
$$

New Trend

26. (a) $\angle D P Q=\angle A P B$ (common \angle)
$\angle P D Q=\angle P A B$ (corr. $\angle \mathrm{s}, D C / / A B)$
$\therefore \triangle P D Q$ is similar to $\triangle P A B$ (2 pairs of corr. \angle s equal)
(b) $\triangle B C Q$
(c) Using similar triangles,

$$
\begin{aligned}
\frac{D Q}{A B}=\frac{P D}{P A} \\
=\frac{1}{3} \\
\therefore D Q: A B=1: 3 \\
\text { (d) } \begin{aligned}
\frac{10}{10+8+R B} & =\frac{1}{3} \\
30 & =18+R B \\
R B & =12 \mathrm{~cm}
\end{aligned} . \begin{aligned}
\\
\therefore D
\end{aligned} \\
\end{aligned}
$$

27. (a) $\angle C A B=\angle N C B$ (given)
$\angle A B C=\angle C B N($ common $\angle)$
$\therefore \triangle A B C$ is similar to $\triangle C B N$ (2 pairs of corr. $\angle \mathrm{s}$ equal).
(b) Using similar triangles,

$$
\begin{aligned}
\frac{B C}{25} & =\frac{13}{B C} \\
B C^{2} & =325 \\
B C & =18 \mathrm{~cm}
\end{aligned}
$$

Chapter 11 Geometrical Constructions

Basic

1.

2.

$$
\begin{aligned}
& \angle Q P R=50^{\circ} \\
& \angle P Q R=61^{\circ}
\end{aligned}
$$

3.

Length of $Q R=6.9 \mathrm{~cm}$.
4.

$$
\angle Y X Z=37^{\circ}
$$

5.

$$
\angle A B C=70^{\circ}
$$

6.

7.

Length of $Y Z=8.0 \mathrm{~cm}$
8.

9.

Length of $L N=6.2 \mathrm{~cm}$
10.

Length of diagonal $P R=8.2 \mathrm{~cm}$
Length of diagonal $Q S=6 \mathrm{~cm}$
11.

Length of diagonal $A C=13.4 \mathrm{~cm}$
Length of diagonal $B D=10.6 \mathrm{~cm}$
12. D

Length of $B D=11.8 \mathrm{~cm}$
$\angle B D A=29^{\circ}$
13.

Length of diagonal $P R=84 \mathrm{~mm}$
Length of diagonal $Q S=84 \mathrm{~mm}$
14.

Length of $B D=11.9 \mathrm{~cm}$
$\angle A B D=41^{\circ}$
15.

16.

Length of diagonal $W Y=10.5 \mathrm{~cm}$
17.

Length of diagonal $B D=11.5 \mathrm{~cm}$
Length of diagonal $A C=6.1 \mathrm{~cm}$
18.

Length of diagonal $P R=10.2 \mathrm{~cm}$
Length of diagonal $Q S=13.3 \mathrm{~cm}$
19.

Length of diagonal $H J=11.8 \mathrm{~cm}$
Length of diagonal $K I=8.4 \mathrm{~cm}$
20.

Length of $A B=3.8 \mathrm{~cm}$
Length of $A D=10.1 \mathrm{~cm}$
21.

Length of diagonal $P R=6.4 \mathrm{~cm}$
Length of diagonal $Q S=7.8 \mathrm{~cm}$
22.

23.

Length of diagonal $P R=9.7 \mathrm{~cm}$
Length of diagonal $Q S=14.2 \mathrm{~cm}$
24.

25.

26.

(i) $\angle A B C=58^{\circ}$
(ii) Length of $B X=5.6 \mathrm{~cm}$
27.

(i) $\angle D E F=67^{\circ}$
(ii) Length of $G F=6.5 \mathrm{~cm}$
28.

(i) Length of $I K=7.5 \mathrm{~cm}$

Length of $J K=8.1 \mathrm{~cm}$
(ii) Length of $I M=0.9 \mathrm{~cm}$
29.

(i) The angle that is facing the longest side is $\angle D E F$.

The size of $\angle D E F=75^{\circ}$.
(ii) Length of $D G=8.2 \mathrm{~cm}$
30.

(i) Length of $E F=6.3 \mathrm{~cm}$
(ii) Length of $D X=6.2 \mathrm{~cm}$
(iv) Length of $D K=5.4 \mathrm{~cm}$
31.

(i) Length of $A D=7 \mathrm{~cm}$ $\angle B A D=47^{\circ}$
(ii) Length of $H B=7 \mathrm{~cm}$
(iii) Length of $K B=8.4 \mathrm{~cm}$
(iv) Length of $H K=4.5 \mathrm{~cm}$
32.

(i) Length of $Q R=4.8 \mathrm{~cm}$
$\angle P Q R=104^{\circ}$
(iii) Length of $R H=4.9 \mathrm{~cm}$

Length of $H K=5.8 \mathrm{~cm}$
33.

(i) Length of diagonal $A C=14.3 \mathrm{~cm}$
(ii) Length of $P C=3.0 \mathrm{~cm}$
(iii) Length of $D R=0.3 \mathrm{~cm}$
(iv) Perpendicular height of Q to the base of the parallelogram

$$
=5.0 \mathrm{~cm}
$$

34.

(i) Length of $C D=11.5 \mathrm{~cm}$
(ii) $\angle A D C=82^{\circ}$
(iii) Length of $C X=7.4 \mathrm{~cm}$
35.

(i) Length of $R S=8.3 \mathrm{~cm}$
(ii) Length of $Q K=4.2 \mathrm{~cm}$

Length of $H K=6 \mathrm{~cm}$
(iii) Ratio of $Q K: K H=4.2: 6$

$$
=7: 10
$$

36.

(i) Length of $C D=11.6 \mathrm{~cm}$

Length of $B C=7.6 \mathrm{~cm}$
(ii) Length of $A K=8.7 \mathrm{~cm}$

Length of $B K=6.8 \mathrm{~cm}$
37.

(i) Length of $S Q=8.2 \mathrm{~cm}$ $\angle P R S=60^{\circ}$
(ii) Length of $P X=5.3 \mathrm{~cm}$
(iii) Length of $R Y=3.7 \mathrm{~cm}$
(iv) Length of $X Y=2.3 \mathrm{~cm}$
38.

(i) Length of $Q R=7.2 \mathrm{~cm}$

Length of $Q S=8.1 \mathrm{~cm}$
(ii) Length of $S H=3.6 \mathrm{~cm}$

Length of $K Q=6.6 \mathrm{~cm}$
(iii) Length of $R M=8.4 \mathrm{~cm}$
(iv) Length of $U M=3.7 \mathrm{~cm}$

Advanced

39.

(ii) The length of $A X$, of $B X$ and of $C X=7.6 \mathrm{~cm}$
40.

(i) Length of $A C=12.9 \mathrm{~cm}$
(iii) (a) Shortest distance of K from $A B=4.0 \mathrm{~cm}$
(b) Shortest distance of K from $B C=4.0 \mathrm{~cm}$
41.

(i) The angle that is facing the longest side is $\angle A B C$. $\angle A B C=84^{\circ}$
(iv) The point X is equidistant from the points \underline{B} and \underline{C}, and equidistant from the lines $\underline{A B}$ and $\underline{B C}$.
(v) Point P is on the perpendicular bisector to the right of the angle bisector, closer to $B C$ than $B A$.

Chapter 12 Geometrical Transformation

Basic

1.

(a) $(7,3)$
(b) $(6,-2)$
2.

3.

$\therefore k=5$
4.

$$
\therefore h=5, k=3
$$

5.

$\therefore A^{\prime}(-4,0), B^{\prime}(4,6)$ and $C^{\prime}(0,-4)$
6.

7.

8. (i) $R^{2}\binom{3}{2}=R\binom{2}{-3}=\binom{-3}{-2}$ i.e. $(-3,-2)$
(ii) $\mathrm{E}^{2}\binom{3}{2}=\mathrm{E}\binom{5}{6}=\binom{8}{12}$ i.e. $(8,12)$
(iii) $\mathrm{ER}\binom{3}{2}=\mathrm{E}\binom{2}{-3}=\binom{2}{-9}$ i.e. $(2,-9)$
(iv) $\mathrm{RE}\binom{3}{2}=\mathrm{R}\binom{5}{6}=\binom{6}{-5}$ i.e. $(6,-5)$
9.

(ii) The centre of rotation is $(4,6)$. The angle of rotation is 90° clockwise or 270° anticlockwise.
10. R^{4} represents $\left(4 \times 160^{\circ}\right)-360^{\circ}$
$=280^{\circ}$ anticlockwise rotation about the origin.
R^{5} represents $\left(5 \times 160^{\circ}\right)-720^{\circ}$
$=80^{\circ}$ anticlockwise rotation about the origin.

Advanced

11. (i) $Z \hat{X} X^{\prime}=20^{\circ}$

$$
\begin{aligned}
& X Z=X^{\prime} Z \\
& \begin{aligned}
\therefore Z \hat{X} X^{\prime} & =\frac{180^{\circ}-20^{\circ}}{2} \\
& =80^{\circ}(\text { base } \angle \text { of isos. } \triangle)
\end{aligned}
\end{aligned}
$$

(ii) $Y \hat{Z} Y^{\prime}=20^{\circ}$

$$
\begin{aligned}
\tan X^{\prime} \hat{Z} Y & =\frac{7}{4} \\
X^{\prime} \hat{Z} Y^{\prime} & =\tan ^{-1} \frac{7}{4} \\
& =60.3^{\circ} \text { (to } 1 \text { d.p.) }
\end{aligned}
$$

$$
\therefore Y \hat{Z} X^{\prime}=60.3^{\circ}-20^{\circ}
$$

$$
=40.3^{\circ}
$$

12. $\frac{x}{x+3}=\frac{3}{4}$

$$
\begin{aligned}
4 x & =3 x+9 \\
x & =9
\end{aligned}
$$

$$
\begin{aligned}
\frac{y}{y+2.8} & =\frac{3}{4} \\
4 y & =3 y+8.4 \\
y & =8.4
\end{aligned}
$$

$$
\therefore x=9, y=8.4
$$

Chapter 13 Statistics

Basic

1. (i)

$\mathbf{p H}$ values, \boldsymbol{x}	Tally	Frequency
$6.5 \leqslant x<7.0$	$/ / / /$	4
$7.0 \leqslant x<7.5$	$/ / /$	3
$7.5 \leqslant x<8.0$	HII ///	8
$8.0 \leqslant x<8.5$	H\#/ ///	8
$8.5 \leqslant x<9.0$	$/ /$	2
$9.0 \leqslant x<9.5$	H/H	5
Total frequency		30

(ii)

(iii) There are many distinct values in the set of data. Using a histogram for grouped data would be more suitable.
(iv) Percentage of the types which are alkaline

$$
\begin{aligned}
& =\frac{26}{30} \times 100 \% \\
& =86.7 \% \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

2. (a)

(b)

Mass, $(x \mathbf{~ k g})$	Mid-value	Frequency
$40<x \leqslant 50$	45	7
$50<x \leqslant 60$	55	10
$60<x \leqslant 70$	65	14
$70<x \leqslant 80$	75	27
$80<x \leqslant 90$	85	12
$90<x \leqslant 100$	95	6
$100<x \leqslant 110$	105	4

The points to be plotted are $(35,0),(45,7),(55,10)$, $(65,14),(75,27),(85,12),(95,6),(105,4)$ and $(115,0)$.

3. (a) Since the class intervals are unequal, the histogram is to be drawn using either height of rectangle or frequency density.

Class interval	Class width		Frequency	Rectangle's height
$10-29$	20	$2 \times$ standard	32	$32 \div 2=16$
$30-39$	10	$1 \times$ standard	38	$38 \div 1=38$
$40-49$	10	$2 \times$ standard	64	$64 \div 1=64$
$50-59$	10	$2 \times$ standard	35	$35 \div 1=35$
$60-69$	10	$1 \times$ standard	22	$22 \div 1=22$
$70-99$	30	$3 \times$ standard	9	$9 \div 3=3$

Mass (kg)
4. Since the class intervals are unequal, the histogram is to be drawn using either height of rectangle or frequency density.

Weekly earnings (\$)	Class width		Frequency	Rectangle's height
$180 \leqslant x<185$	5	$1 \times$ standard	4	$4 \div 1=4$
$185 \leqslant x<190$	5	$1 \times$ standard	6	$6 \div 1=6$
$190 \leqslant x<200$	10	$2 \times$ standard	8	$8 \div 2=4$
$200 \leqslant x<210$	10	$2 \times$ standard	18	$18 \div 2=9$
$210 \leqslant x<225$	15	$3 \times$ standard	18	$18 \div 3=6$
$225 \leqslant x<230$	5	$1 \times$ standard	6	$6 \div 1=6$
$230 \leqslant x<235$	5	$1 \times$ standard	8	$8 \div 1=8$

5. (a) For Class B,

Marks	Mid- value (\boldsymbol{x})	\boldsymbol{f}	$\boldsymbol{f} \boldsymbol{x}$	$\boldsymbol{f} \boldsymbol{x}^{\mathbf{2}}$
$10<x \leqslant 30$	20	4	80	1600
$30<x \leqslant 50$	40	9	360	14400
$50<x \leqslant 70$	60	12	720	43200
$70<x \leqslant 90$	80	5	400	32000
Sum		$\Sigma f=30$	$\Sigma f x$ $=1560$	$\Sigma f x^{2}$ $=91200$

(i) Mean, $\bar{x}=\frac{\Sigma f x}{\Sigma f}=\frac{1560}{30}=52$ marks
(ii) Standard deviation $=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\bar{x}^{2}}$

$$
=\sqrt{\frac{91200}{30}-52^{2}}
$$

$$
=18.3 \text { marks (to } 3 \text { s.f.) }
$$

(b) Class A performed better since its mean mark is higher than that of Class B.
6.

Time (min)	Mid- value (\boldsymbol{x})	\boldsymbol{f}	$\boldsymbol{f x}$	$\boldsymbol{f} \boldsymbol{x}^{2}$
$30<x \leqslant 35$	32.5	4	130	4225
$35<x \leqslant 40$	37.5	2	75	2812.5
$40<x \leqslant 45$	42.5	4	170	7225
$45<x \leqslant 50$	47.5	5	237.5	11281.25
$50<x \leqslant 55$	52.5	3	157.5	8268.75
$55<x \leqslant 60$	57.5	3	172.5	9918.75
$60<x \leqslant 65$	62.5	4	250	15625
$65<x \leqslant 70$	67.5	5	337.5	22781.25
Sum				

(i) Mean, $\bar{x}=\frac{\Sigma f x}{\Sigma f}=\frac{1530}{30}=51 \mathrm{~min}$
(ii) Standard deviation $=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\bar{x}^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{82137.5}{30}-51^{2}} \\
& =11.7 \mathrm{~min} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

10. (a) (i) For Class X,

\boldsymbol{x}	\boldsymbol{f}	$\boldsymbol{f} \boldsymbol{x}$	$\boldsymbol{f} \boldsymbol{x}^{\mathbf{2}}$
2	2	4	8
3	3	9	27
4	6	24	96
5	11	55	275
6	10	60	360
7	7	49	343
8	1	8	64
Sum	$\Sigma f=40$	$\Sigma f x=209$	$\Sigma f x^{2}=1173$

mean, $\bar{x}=\frac{\Sigma f x}{\Sigma f}$

$$
=\frac{209}{40}
$$

$$
=5.225
$$

$$
=5.23 \text { hours (to } 3 \text { s.f.) }
$$

standard deviation $=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\bar{x}^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{1173}{40}-5.225^{2}} \\
& =1.42 \text { hours (to } 3 \text { s.f.) }
\end{aligned}
$$

(ii) For Class Y,

\boldsymbol{x}	\boldsymbol{f}	$\boldsymbol{f} \boldsymbol{x}$	$\boldsymbol{f x}^{\mathbf{2}}$
2	4	8	16
3	4	12	36
4	9	36	144
5	8	40	200
6	7	42	252
7	5	35	245
8	3	24	192
Sum	$\Sigma f=40$	$\Sigma f x=197$	$\Sigma f x^{2}=1085$

$$
\text { mean, } \begin{aligned}
\bar{x} & =\frac{\Sigma f x}{\Sigma f} \\
& =\frac{197}{40} \\
& =4.925 \\
& =4.93 \text { hours (to } 3 \text { s.f.) }
\end{aligned}
$$

$$
\text { standard deviation }=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\bar{x}^{2}}
$$

$$
=\sqrt{\frac{1085}{40}-4.925^{2}}
$$

$$
=1.69 \text { hours (to } 3 \text { s.f.) }
$$

(b) Class Y spends less time on surfing the Internet since the mean time spent by pupils on the Internet is lesser as compared to Class X.
11. (a) Mean of Nadeem $=20$

$$
\frac{21+43+x+8+34+24+12+2}{8}=20
$$

$$
144+x=160
$$

$$
x=16
$$

Mean of Nasir $=y$
$\frac{6+9+15+26+10+14+21+3}{8}=y$
$y=13$
$\therefore x=16, y=13$
(b) Nadeem was more careless because the mean number of mistakes she made is higher than Nasir's.
(c) Nasir was more consistent because her standard deviation is smaller than Nadeem's, i.e. the number of mistakes is not as widely spread as Nadeem's.
12. (i)

(ii) The measures taken have been effective in improving the air quality as the PSI values in 2013 are generally lower than those in 2012.

New Trend

13. (a)

Marks	Mid- value (\boldsymbol{x})	\boldsymbol{f}				$\boldsymbol{f} \boldsymbol{x}$	$\boldsymbol{f} \boldsymbol{x}^{2}$
		\boldsymbol{f}	$\boldsymbol{f x}$	$\boldsymbol{f} \boldsymbol{x}^{2}$			
$15.0<x \leqslant 15.5$	15.25	3	45.75	697.69	22	335.5	5116.385
$15.5<x \leqslant 16.0$	15.75	14	220.5	3472.88	27	425.25	6697.69
$16.0<x \leqslant 16.5$	16.25	26	422.5	6865.63	19	308.75	5017.19
$16.5<x \leqslant 17.0$	16.75	33	552.75	9258.56	20	335	5611.25
$17.0<x \leqslant 17.5$	17.25	21	362.25	6248.81	16	276	4761
$17.5<x \leqslant 18.0$	17.75	10	177.5	3150.63	5	88.75	1575.31
$18.0<x \leqslant 18.5$	18.25	3	54.75	999.19	1	18.25	333.06
Sum		$\Sigma f=110$	$\Sigma f x=1836$	$\Sigma f x^{2}=30693.39$	$\Sigma f=110$	$\Sigma f x=1787.5$	$\Sigma f x^{2}=29111.88$

For City G,
(i) mean, $\bar{x}=\frac{\Sigma f x}{\Sigma f}$

$$
\begin{aligned}
& =\frac{1836}{110} \\
& \left.=16.7^{\circ} \mathrm{C} \text { (to } 3 \text { s.f. }\right)
\end{aligned}
$$

(ii) standard deviation $=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\bar{x}^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{30693.39}{110}-16.69^{2}} \\
& =0.689^{\circ} \mathrm{C} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

For City P,
(i) mean, $\bar{x}=\frac{\Sigma f x}{\Sigma f}$

$$
\begin{aligned}
& =\frac{1787.5}{110} \\
& =16.25^{\circ} \mathrm{C}
\end{aligned}
$$

(ii) standard deviation $=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\bar{x}^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{29111.88}{110}-16.25^{2}} \\
& =0.769^{\circ} \mathrm{C} \text { (to } 3 \text { s.f.) }
\end{aligned}
$$

(b) City G is warmer because its mean temperature is higher.
(c) City G's temperature is more consistent because its standard deviation is smaller.
(d) For City G, mean $=19.7^{\circ} \mathrm{C}$
standard deviation $=0.689^{\circ} \mathrm{C}$
For City P, mean $=19.25^{\circ} \mathrm{C}$
standard deviation $=0.769^{\circ} \mathrm{C}$

14.

Blood pressure $(\mathbf{m m ~ H g})$	Mid- value (\boldsymbol{x})	\boldsymbol{f}	$\boldsymbol{f x}$	$\boldsymbol{f x}^{2}$				
$55<x \leqslant 60$	57.5	1	57.5	3306.25				
$60<x \leqslant 65$	62.5	4	250	15625				
$65<x \leqslant 70$	67.5	10	675	45562.5				
$70<x \leqslant 75$	72.5	21	1522.5	110381.25				
$75<x \leqslant 80$	77.5	35	2712.5	210218.75				
$80<x \leqslant 85$	82.5	29	2392.5	197381.25				
$85<x \leqslant 90$	87.5	13	1137.5	99531.25				
$90<x \leqslant 95$	92.5	7	647.5	59893.75				
Sum						$\Sigma f=120$	$\Sigma f x$ $=9395$	$\Sigma f x^{2}$ $=741900$

Mean, $\bar{x}=\frac{\Sigma f x}{\Sigma f}=\frac{9395}{120}=78.3 \mathrm{~mm} \mathrm{Hg}$ (to 3 s.f.)
Standard deviation $=\sqrt{\frac{\Sigma f x^{2}}{\Sigma f}-\bar{x}^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{741900}{120}-78.29^{2}} \\
& =7.29 \mathrm{~mm} \mathrm{Hg}(\text { to } 3 \text { s.f. })
\end{aligned}
$$

Chapter 14 Probability of Combined Events

Basic

1. The fifteen cards are labelled $16,17,18, \ldots, 30$,
(a) $\mathrm{P}($ contains 7$)=\frac{2}{15}$
(b) $\mathrm{P}($ contains at least a 2$)=\frac{10}{15}=\frac{2}{3}$
(c) $\mathrm{P}($ multiple of 3$)=\frac{5}{15}=\frac{1}{3}$
(d) $\mathrm{P}($ prime $)=\frac{4}{15}$
(e) $\mathrm{P}($ divisible by 5$)=\frac{3}{15}=\frac{1}{5}$
2. There are 5 red balls, 6 white balls and 9 green balls.
(a) $\mathrm{P}($ green $)=\frac{9}{20}$
(b) $\mathrm{P}($ red and white $)=\frac{11}{20}$
(c) There are no yellow balls.
$\mathrm{P}($ yellow $)=0$
(d) $\mathrm{P}($ red, green or white $)=1$
3. There are x white marbles $(W), y$ blue marbles (B) and 8 red marbles (R).
$\mathrm{P}(B)=\frac{y}{x+y+8}=\frac{8}{15}$
$8 x+8 y+64=15 y$

$$
8 x+64=7 y-(1)
$$

$\mathrm{P}(W)=\frac{x}{x+y+8}=\frac{1}{5}$

$$
5 x=x+y+8
$$

$4 x-8=y$-(2)
Substitute (2) into (1):
$8 x+64=7(4 x-8)$
$8 x+64=28 x-56$

$$
20 x=120
$$

$$
x=6
$$

$\therefore x=6$
$y=4(6)-8=16$
\therefore Total number of marbles $=6+16+8=30$
4. (a) $\mathrm{P}\left(\mathrm{a}^{\prime} 5\right.$ ') $=\frac{1}{12}$
(b) $\mathrm{P}($ a heart $)=\frac{2}{12}=\frac{1}{6}$
(c) $\mathrm{P}($ a spade $)=\frac{6}{12}=\frac{1}{2}$
(d) $\mathrm{P}($ a picture card $)=\frac{6}{12}=\frac{1}{2}$
(e) $\mathrm{P}($ the ace of diamond $)=0$
5. (a)

		y						
	1	2	3	4	5	6		
	1	0	-1	-2	-3	-4	-5	
	2	1	0	-1	-2	-3	-4	
	3	2	1	0	-1	-2	-3	
	4	3	2	1	0	-1	-2	
	5	4	3	2	1	0	-1	
	6	5	4	3	2	1	0	

(b) (i) $\quad \mathrm{P}($ negative $)=\frac{15}{36}=\frac{5}{12}$
(ii) $\mathrm{P}($ positive and even $)=\frac{6}{36}=\frac{1}{6}$
(iii) $\mathrm{P}($ non-zero $)=\frac{30}{36}=\frac{5}{6}$
(iv) $\mathrm{P}(\geqslant 2)=\frac{10}{36}=\frac{5}{18}$
(v) $\mathrm{P}($ not a multiple of 3$)=\frac{24}{36}=\frac{2}{3}$
6. There are x red balls and $(35-x)$ blue balls.
(a) $\mathrm{P}($ red $)=\frac{x}{35}$
(b) After 5 red balls are removed, there are $(x-5)$ red balls and $(30-x)$ blue balls.

$$
\begin{aligned}
\mathrm{P}(\mathrm{red})=\frac{x-5}{30} & =\frac{x}{35}-\frac{1}{14} \\
\frac{x-5}{30} & =\frac{2 x-5}{70} \\
70 x-350 & =60 x-150 \\
10 x & =200
\end{aligned}
$$

$\therefore x=20$

Intermediate

7. (a) (i) $\mathrm{P}(<4)=\mathrm{P}(1,2$ or 3$)=\frac{3}{8}$
(ii) $\mathrm{P}($ a prime number $)=\mathrm{P}(2,3,5,7)=\frac{4}{8}=\frac{1}{2}$
(iii) $\mathrm{P}(6$ or 8$)=\frac{2}{8}=\frac{1}{4}$
(b)

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	4	6	8	10	12	14	16
3	3	6	9	12	15	18	21	24
4	4	8	12	16	20	24	28	32
5	5	10	15	20	25	30	35	40
6	6	12	18	24	30	36	42	48
7	7	14	21	28	35	42	49	56
8	8	16	24	32	40	48	56	64

(i) $\mathrm{P}($ odd $)=\frac{16}{64}=\frac{1}{4}$
(ii) $\mathrm{P}($ even $)=1-\mathrm{P}($ odd $)=1-\frac{1}{4}=\frac{3}{4}$
(iii) $\mathrm{P}($ a perfect square $)=\frac{12}{64}=\frac{3}{16}$
(iv) $\mathrm{P}($ not a perfect cube $)=1-\mathrm{P}($ a perfect cube $)$

$$
\begin{aligned}
& =1-\frac{6}{64} \\
& =\frac{29}{32}
\end{aligned}
$$

(v) $\mathrm{P}($ a prime number $)=\frac{8}{64}=\frac{1}{8}$
(vi) $\mathrm{P}($ a multiple of 6$)=\frac{21}{64}$
(vii) $\mathrm{P}(\leqslant 20)=\frac{38}{64}=\frac{19}{32}$
$($ viii $) P($ divisible by 3 or 5$)=\frac{39}{64}$
(ix) $\mathrm{P}($ divisible by 3 and 4$)=\frac{11}{64}$
8. (a)

	1	2	3	4	5	6	8
3	4	5	6	7	8	9	11
5	6	7	8	9	10	11	13
7	8	9	10	11	12	13	15
9	10	11	12	13	14	15	17

	1	2	3	4	5	6	8
3	3	6	9	12	15	18	24
5	5	10	15	20	25	30	40
7	7	14	21	28	35	42	56
9	9	18	27	36	45	54	72

(b) (i) $\mathrm{P}($ sum $>5)=\frac{26}{28}=\frac{13}{14}$
(ii) $\mathrm{P}($ sum $\leqslant 9)=\frac{12}{28}=\frac{3}{7}$
(iii) $\mathrm{P}($ sum is prime $)=\frac{11}{28}$
(iv) $\mathrm{P}($ sum is a multiple of 5$)=\frac{6}{28}=\frac{3}{14}$
(v) $\mathrm{P}($ product is odd $)=\frac{12}{28}=\frac{3}{7}$
(vi) $\mathrm{P}($ product is even $)=\frac{16}{28}=\frac{4}{7}$
(vii) P (product consists of two digits) $=\frac{22}{28}=\frac{11}{14}$
$\left(\right.$ viii) $\mathrm{P}($ product is divisible by 4$)=\frac{8}{28}=\frac{2}{7}$
(ix) $\mathrm{P}($ product $\geqslant 20)=\frac{15}{28}$
(x) $\mathrm{P}($ product is a perfect square $)=\frac{3}{28}$
9. $A=\{2,3\}, B=\{1,3,9\}, C=\{2,4,6,8,10\}$
(a) $A \cap B=\{3\}$
(b) $\mathrm{P}($ number is in $C)=\frac{5}{8}$
(c) $\mathrm{P}($ number is in $B)=\frac{1}{2}$
10. $\mathbb{U}=\{41,42,43, \ldots, 59,60\}$
(a) $\mathrm{P}($ an even number $)=\frac{10}{20}=\frac{1}{2}$
(b) $\mathrm{P}($ a perfect square $)=\frac{1}{20}$
(c) $\mathrm{P}($ a multiple of 7$)=\frac{3}{20}$
(d) P (product of its two digits is odd)

$$
\begin{aligned}
& =P(51,53,55,57,59) \\
& =\frac{5}{20} \\
& =\frac{1}{4}
\end{aligned}
$$

(e) (i) $\mathrm{P}($ sum $>10)=\mathrm{P}(47,48,49,56,57,58,59)$

$$
=\frac{7}{20}
$$

(ii) $\mathrm{P}($ sum $>4)=1$
(iii) $\mathrm{P}($ sum $>15)=0$
11. (a) $\mathrm{P}($ Maaz does not proceed to JC or Poly)

$$
\begin{aligned}
& =1-\frac{3}{8}-\frac{1}{3} \\
& =\frac{7}{24}
\end{aligned}
$$

(b) P (Maaz proceeds to JC while Sarah proceeds to neither JC nor Poly)
$=\frac{3}{8} \times\left[1-\left(\frac{5}{8}+\frac{1}{4}\right)\right]$
$=\frac{3}{64}$
(c) P (only one proceeds to JC)
$=\mathrm{P}($ Maaz proceeds to JC and Sarah does not $)$ or P (Sarah proceeds to JC and Maaz does not)
$=\frac{3}{8} \times\left(1-\frac{5}{8}\right)+\left(1-\frac{3}{8}\right) \times \frac{5}{8}$
$=\frac{17}{32}$
12. There are 8 white discs $(W), 12$ green discs (G) and x yellow discs (Y).
(a) $\mathrm{P}(Y)=\frac{x}{8+12+x}=\frac{2}{7}$

$$
\begin{aligned}
7 x & =40+2 x \\
5 x & =40 \\
x & =8
\end{aligned}
$$

(b) (i) $\mathrm{P}(W W)=\frac{8}{28} \times \frac{7}{27}=\frac{2}{27}$
(ii) $\mathrm{P}(G G)=\frac{12}{28} \times \frac{11}{27}=\frac{11}{63}$
(iii) $\mathrm{P}(W Y)=\mathrm{P}(W Y$ or $Y W)$

$$
\begin{aligned}
& =\frac{8}{28} \times \frac{8}{27}+\frac{8}{28} \times \frac{8}{27} \\
& =\frac{32}{189}
\end{aligned}
$$

(iv) $\mathrm{P}(G$ and black $)=0$
13. (a) $\{(5 C, 0 W),(4 C, 1 W),(3 C, 2 W),(2 C, 3 W),(1 C, 4 W)$, $(0 C, 5 W)\}$
$=\{20,15,13,5,0,-5\}$
(b) (i) $\quad \mathrm{P}(20$ marks $)=\frac{1}{6}$
(ii) $\mathrm{P}(0$ marks $)=\frac{1}{6}$
(iii) $\mathrm{P}(>6$ marks $)=\frac{3}{6}=\frac{1}{2}$
(iv) $\mathrm{P}(<-3$ marks $)=\frac{1}{6}$
14. (a)

	1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8	9
2	3	4	5	6	7	8	9	10
3	4	5	6	7	8	9	10	11
4	5	6	7	8	9	10	11	12
5	6	7	8	9	10	11	12	13
6	7	8	9	10	11	12	13	14
7	8	9	10	11	12	13	14	15
8	9	10	11	12	13	14	15	16

(b) (i) $\mathrm{P}($ even $)=\frac{32}{64}=\frac{1}{2}$
(ii) $\mathrm{P}($ odd $)=\frac{32}{64}=\frac{1}{2}$
(iii) $\mathrm{P}($ prime $)=\frac{23}{64}$
(iv) $\mathrm{P}(\leqslant 10)=\frac{43}{64}$
(v) $\mathrm{P}(>5)=\frac{54}{64}=\frac{27}{32}$
(vi) $\mathrm{P}($ multiple of 3$)=\frac{22}{64}=\frac{11}{32}$
15. (a)

(b) (i) P (first animal is horse and second is elephant)
$=\frac{4}{9} \times \frac{5}{8}$
$=\frac{5}{18}$
(ii) P (at least one of the animals is an elephant)
$=1-\mathrm{P}$ (both horses)

$$
=1-\frac{4}{9} \times \frac{3}{8}
$$

$$
=\frac{5}{6}
$$

Alternatively,
P (at least one of the animals is an elephant)
$=\mathrm{P}($ Elephant, Elephant $)$ or P(Elephant, Horse $)$ or P(Horse, Elephant)
$=\frac{5}{9} \times \frac{4}{8}+\frac{5}{9} \times \frac{4}{8}+\frac{4}{9} \times \frac{5}{8}$
$=\frac{5}{6}$
(iii) P (second animal chosen is a horse)
$=\mathrm{P}($ Elephant, Horse $)$ or $\mathrm{P}($ Horse, Horse $)$
$=\frac{5}{9} \times \frac{4}{8}+\frac{4}{9} \times \frac{3}{8}$
$=\frac{4}{9}$
16. There are x red marbles $(R), y$ yellow marbles (Y) and 55 blue marbles (B).
(a) $\mathrm{P}(R)=\frac{1}{8}=\frac{x}{x+y+55}$

$$
8 x=x+y+55
$$

$$
y=7 x-55-(1)
$$

$\mathrm{P}(Y)=\frac{5}{12}=\frac{x}{x+y+55}$

$$
12 y=5 x+5 y+275
$$

$$
7 y=5 x+275-(2)
$$

(b) Substitute (1) into (2) :

$$
\begin{aligned}
7(7 x-55) & =5 x+275 \\
49 x-385 & =5 x+275 \\
44 x & =660 \\
x & =15
\end{aligned}
$$

Substitute $x=15$ into (1) :

$$
\begin{aligned}
y & =7(15)-55 \\
& =50
\end{aligned}
$$

(c) Now, there are $15 R, 50 Y$ and $55 B$.
(i) $\mathrm{P}(R R)=\frac{15}{120} \times \frac{14}{119}=\frac{1}{68}$
(ii) P (one R and one B)
$=\mathrm{P}(R B$ or $B R)$
$=\frac{15}{120} \times \frac{55}{119}+\frac{55}{120} \times \frac{15}{119}$
$=\frac{55}{476}$
(iii) P (2 marbles of different colours)

$$
\begin{aligned}
& =\mathrm{P}(R B, R Y, Y B, B R, Y R, B Y) \\
& =\left(\frac{15}{120} \times \frac{55}{119}+\frac{15}{120} \times \frac{50}{110}+\frac{50}{120} \times \frac{55}{119}\right) \times 2 \\
& =\frac{865}{1428}
\end{aligned}
$$

17. There are x red balls (R) and $(15-x)$ white balls (W).
(a) $\mathrm{P}(R)=\frac{x}{15}$
(b) $\mathrm{P}(R R)=\frac{x}{15} \times \frac{x-1}{14}=\frac{x(x-1)}{210}$
(c) $\frac{x}{15} \times \frac{x-1}{14}=\frac{12}{35}$

$$
35 x(x-1)=12 \times 210
$$

$$
x(x-1)=72
$$

$$
x^{2}-x=72
$$

(d) $x^{2}-x-72=0$
$(x+8)(x-9)=0$
$\therefore x=-8$ (NA) or $x=9$
\therefore There are 6 white balls in the bag.
18. (a) $\mathrm{P}(Y)=\frac{60^{\circ}}{360^{\circ}}=\frac{1}{6}$
(b) (i) $\mathrm{P}(R B)=\frac{120}{360} \times \frac{120}{360}=\frac{1}{9}$
(ii) $\mathrm{P}(G$ at second spin)

$$
\begin{aligned}
= & \mathrm{P}(G G, R G, B G, Y G) \\
= & \frac{60}{360} \times \frac{60}{360}+\frac{120}{360} \times \frac{60}{360}+\frac{120}{360} \times \frac{60}{360} \\
& +\frac{60}{360} \times \frac{60}{360} \\
= & \frac{1}{6}
\end{aligned}
$$

(iii) $\mathrm{P}(Y$ or $R)$

$$
\begin{aligned}
= & \mathrm{P}(Y Y, Y R, R Y, R R) \\
= & \frac{1}{6} \times \frac{1}{6}+\frac{1}{6} \times \frac{120}{360}+\frac{120}{360} \times \frac{1}{6} \\
& +\frac{120}{360} \times \frac{120}{360} \\
= & \frac{1}{4}
\end{aligned}
$$

(iv) P (different colours at both spins)
$=1-\mathrm{P}($ same colour at both spins $)$
$=1-\mathrm{P}(R R$ or $Y Y$ or $B B$ or $G G)$

$$
\begin{aligned}
& =1-\left(\frac{1}{3} \times \frac{1}{3}+\frac{1}{6} \times \frac{1}{6}+\frac{1}{3} \times \frac{1}{3}+\frac{1}{6} \times \frac{1}{6}\right) \\
& =\frac{13}{18}
\end{aligned}
$$

19. (a)

(b) (i) $\mathrm{P}(20$ paisas in total $)=\mathrm{P}(10$ paisas, 10 paisas $)$

$$
\begin{aligned}
& =\frac{4}{9} \times \frac{3}{8} \\
& =\frac{1}{6}
\end{aligned}
$$

(ii) $\mathrm{P}(60$ paisas in total $)$
$=\mathrm{P}(10$ paisas, 50 paisas $)$ or $\mathrm{P}(50$ paisas, 10 paisas)

$$
\begin{aligned}
& =\frac{4}{9} \times \frac{5}{8}+\frac{5}{9} \times \frac{4}{8} \\
& =\frac{5}{9}
\end{aligned}
$$

(c) (i) $\mathrm{P}(70$ paisas in total)
$=\mathrm{P}(50$ paisas, 10 paisas, 10 paisas $)$ or $\mathrm{P}(10$ paisas, 50 paisas, 10 paisas) or $\mathrm{P}(10$ paisas, 10 paisas, 50 paisas)

$$
=\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7}+\frac{4}{9} \times \frac{5}{8} \times \frac{3}{7}+\frac{4}{9} \times \frac{3}{8} \times \frac{5}{7}
$$

$$
=\frac{5}{14}
$$

(ii) P (at least PKR 1.10)
$=\mathrm{P}(50$ paisas, 50 paisas, 50 paisas $)$ or $\mathrm{P}(50$ paisas, 50 paisas, 10 paisas) or P (10 paisas, 50 paisas, 50 paisas) or $\mathrm{P}(50$ paisas, 10 paisas, 50 paisas)

$$
\begin{aligned}
= & \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7}+\frac{5}{9} \times \frac{4}{8} \times \frac{4}{7}+\frac{4}{9} \times \frac{5}{8} \times \frac{4}{7} \\
& +\frac{5}{9} \times \frac{4}{8} \times \frac{4}{7} \\
= & \frac{25}{42}
\end{aligned}
$$

20. (a) $\mathrm{P}($ box B is chosen $)=\frac{1}{2}$
(b) $\mathrm{P}($ even number on ball $)=\mathrm{P}(A$ even or B even $)$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{4}{9}+\frac{1}{2} \times \frac{3}{6} \\
& =\frac{17}{36}
\end{aligned}
$$

(c) P (box A is chosen and even number on ball)

$$
=\frac{1}{2} \times \frac{4}{9}
$$

$=\frac{2}{9}$
(d) P (box B is chosen and prime number on ball)
$=\frac{1}{2} \times \frac{3}{6}$
$=\frac{1}{4}$
21. (a) $\mathrm{P}($ both alive $)=0.45 \times 0.5=\frac{9}{40}$
(b) $\mathrm{P}($ only wife alive $)=\mathrm{P}($ man dies and wife survives $)$

$$
\begin{aligned}
& =(1-0.45) \times 0.5 \\
& =\frac{11}{40}
\end{aligned}
$$

(c) P (at least one of them survives)

$$
\begin{aligned}
& =1-\mathrm{P}(\text { both do not survive }) \\
& =1-(1-0.45) \times(1-0.5) \\
& =1-\frac{11}{40} \\
& =\frac{29}{40}
\end{aligned}
$$

22. (a)

(b) (i) $\mathrm{P}(R R)=\frac{5}{9} \times \frac{5}{9}=\frac{25}{81}$
(ii) $\mathrm{P}($ different colours $)=\mathrm{P}(R G$ or $G R)$

$$
\begin{aligned}
& =\frac{5}{9} \times \frac{4}{9}+\frac{4}{9} \times \frac{5}{8} \\
& =\frac{85}{162}
\end{aligned}
$$

(iii) $\mathrm{P}($ at least three green balls are left)

$$
\begin{aligned}
& =1-\mathrm{P}(R R)-\mathrm{P}(R G)-\mathrm{P}(G R) \\
& =1-\frac{5}{9} \times \frac{5}{9}-\frac{5}{9} \times \frac{4}{9}-\frac{4}{9} \times \frac{5}{8} \\
& =\frac{1}{6}
\end{aligned}
$$

23. (a) P (only Laila solves)
$=\mathrm{P}($ Laila solves and Leena does not solve $)$
$=\frac{1}{2} \times\left(1-\frac{2}{5}\right)$
$=\frac{3}{10}$
(b) P (at least one of them solves)
$=1-\mathrm{P}$ (both do not solve)
$=1-\frac{3}{5} \times \frac{1}{2}$
$=\frac{7}{10}$
24. (a) $\mathrm{P}($ two diamonds $)=\frac{13}{52} \times \frac{12}{51}=\frac{1}{17}$
(b) P (two Queens) $=\frac{4}{52} \times \frac{3}{51}=\frac{1}{221}$
(c) P (one heart and one spade)
$=\mathrm{P}($ heart, spade or spade, heart $)$
$=\frac{13}{52} \times \frac{13}{51}+\frac{13}{52} \times \frac{13}{51}$

$$
=\frac{13}{102}
$$

25. There are 7 toffees in green paper $(T G), 4$ barley sugar in red paper $(B R), 3$ toffees in red paper $(T R)$ and 6 barley sugar in green paper $(B G)$.
(a) $\mathrm{P}(T$ and $B R)=\frac{10}{20} \times \frac{4}{19}=\frac{2}{19}$
(b) $\mathrm{P}(T T)=\frac{10}{20} \times \frac{9}{19}=\frac{9}{38}$
(c) $\mathrm{P}(B G, B G)=\frac{6}{20} \times \frac{5}{19}=\frac{3}{38}$
(d) $\mathrm{P}($ same flavour $)=\mathrm{P}(T T$ or $B B)$

$$
\begin{aligned}
& =\frac{10}{20} \times \frac{9}{19}+\frac{10}{20} \times \frac{9}{19} \\
& =\frac{9}{19}
\end{aligned}
$$

(e) $\mathrm{P}($ different colour $)=\mathrm{P}(G R$ or $R G)$

$$
\begin{aligned}
& =\frac{13}{20} \times \frac{7}{19}+\frac{7}{20} \times \frac{13}{19} \\
& =\frac{91}{190}
\end{aligned}
$$

26. There are 6 yellow marbles (Y) and 3 green marbles (G).
(a) $\mathrm{P}(Y Y$ with replacement $)=\frac{6}{9} \times \frac{6}{9}=\frac{4}{9}$
(b) $\mathrm{P}(Y Y$ without replacement $)=\frac{6}{9} \times \frac{5}{8}=\frac{5}{12}$

Advanced

27. (a) $\mathrm{P}($ to $Q)=\frac{1}{3}$
(b) $\mathrm{P}($ to $T)=\mathrm{P}($ straight and right $)$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{1}{6} \\
& =\frac{1}{12}
\end{aligned}
$$

(c) $\mathrm{P}($ to $U)=\mathrm{P}$ (straight and straight)

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{1}{2} \\
& =\frac{1}{4}
\end{aligned}
$$

28. There are 3 red socks (R) and 5 green socks (G) in the first bag and 6 red socks (R) and 4 green socks (G) in the second bag.
(a) $\mathrm{P}($ both $R)=\mathrm{P}(R R)$

$$
\begin{aligned}
& =\frac{3}{8} \times \frac{6}{5} \\
& =\frac{9}{40}
\end{aligned}
$$

(b) $\mathrm{P}($ at least one is $G)=1-\mathrm{P}(R R)$

$$
\begin{aligned}
& =1-\frac{9}{40} \\
& =\frac{31}{40}
\end{aligned}
$$

(c) P (different colours) $=\mathrm{P}(R G$ or $G R)$

$$
\begin{aligned}
& =\frac{3}{8} \times \frac{4}{10}+\frac{5}{8} \times \frac{6}{10} \\
& =\frac{21}{40}
\end{aligned}
$$

29. $\mathrm{P}($ getting distinction in English $)=\mathrm{P}(E)=\frac{5}{7}$
$\mathrm{P}($ getting distinction in Maths $)=\mathrm{P}(M)=\frac{3}{4}$
$\mathrm{P}($ getting distinction in Science $)=\mathrm{P}(S)=\frac{5}{6}$
(a) $\mathrm{P}($ no distinction $)=\frac{2}{7} \times \frac{1}{4} \times \frac{1}{6}=\frac{1}{84}$
(b) P (exactly one distinction)

$$
\begin{aligned}
& =\mathrm{P}\left(E M^{\prime} S^{\prime} \text { or } E^{\prime} M S^{\prime} \text { or } E^{\prime} M^{\prime} S\right) \\
& =\frac{5}{7} \times \frac{1}{4} \times \frac{1}{6}+\frac{2}{7} \times \frac{3}{4} \times \frac{1}{6}+\frac{2}{7} \times \frac{1}{4} \times \frac{5}{6} \\
& =\frac{1}{8}
\end{aligned}
$$

(c) P (qualify for entry)
$=1-\mathrm{P}($ no distinction or exactly one distinction)

$$
\begin{aligned}
& =1-\frac{1}{84}-\frac{1}{8} \\
& =\frac{145}{168}
\end{aligned}
$$

30. (a)

(b) (i) P (one ball of each colour)
$=\mathrm{P}(G B R$ or $G R B$ or $B G R$ or $B R G$ or $R G B$ or $R B G)$
$=\left(\frac{7}{16} \times \frac{5}{15} \times \frac{4}{14}\right) \times 6$
$=\frac{1}{4}$
(ii) P (exactly one is blue)

$$
\begin{aligned}
= & \mathrm{P}\left(B B^{\prime} B^{\prime} \text { or } B^{\prime} B B^{\prime} \text { or } B^{\prime} B^{\prime} B\right) \\
= & \frac{5}{16} \times \frac{11}{15} \times \frac{10}{14}+\frac{11}{16} \times \frac{5}{15} \times \frac{10}{14} \\
& +\frac{11}{16} \times \frac{10}{15} \times \frac{5}{14} \\
= & \frac{55}{112}
\end{aligned}
$$

(iii) $\mathrm{P}($ no red balls $)=\mathrm{P}\left(R^{\prime} R^{\prime} R^{\prime}\right)$

$$
\begin{aligned}
& =\frac{12}{16} \times \frac{11}{15} \times \frac{10}{14} \\
& =\frac{11}{28}
\end{aligned}
$$

(iv) P (second ball is G)

$$
\begin{aligned}
& =\mathrm{P}(G G \text { any }, B G \text { any, } R G \text { any }) \\
& =\frac{7}{16} \times \frac{6}{15} \times 1+\frac{5}{16} \times \frac{7}{15} \times 1+\frac{4}{16} \times \frac{7}{15} \times 1 \\
& =\frac{7}{16}
\end{aligned}
$$

31. There are 4 white counters (W) and 3 black counters (B).
$\mathrm{P}($ two counters of each colour are left)
$=\mathrm{P}(W W B$ or $W B W$ or $B W W)$
$=\frac{4}{7} \times \frac{3}{6} \times \frac{3}{5}+\frac{4}{7} \times \frac{3}{6} \times \frac{3}{5}+\frac{3}{7} \times \frac{4}{6} \times \frac{3}{5}$
$=\frac{18}{35}$

New Trend

32. (a) $\mathrm{P}($ both balls are black $)=\frac{15-n}{15}\left(\frac{14-n}{14}\right)$

$$
=\frac{210-29 n+n^{2}}{210}
$$

(b) $\frac{210-29 n+n^{2}}{210}=\frac{2}{35}$
$210-29 n+n^{2}=12$
$n^{2}-29 n+198=0$ (shown)
(c) $n^{2}-29 n+198=0$
$(n-11)(n-18)=0$

$$
n=11 \text { or } n=18
$$

\therefore There are $15-11=4$ black balls.
33. (a) (i) P (student from School A who obtains $>$ 30 marks)
$=\frac{23+19}{160}$
$=\frac{21}{80}$
(ii) P (student gets a score $\leqslant 20$ marks)

$$
\begin{aligned}
& =\frac{17+9}{160} \\
& =\frac{13}{80}
\end{aligned}
$$

(b) P (both students from School B who obtain $>$ 40 marks)
$=\frac{22}{160} \times \frac{21}{159}$
$=0.0182$ (to 3 s.f.)
34. (a) $\mathrm{P}($ prime $)=\frac{5}{10}$

$$
=\frac{1}{2}
$$

(b) $\mathrm{P}($ both even $)=\frac{1}{2} \times \frac{1}{2}$

$$
=\frac{1}{4}
$$

(c) $\mathrm{P}($ sum is 3$)=\mathrm{P}(1,2)+\mathrm{P}(2,1)$

$$
\begin{aligned}
& =\frac{2}{10} \times \frac{2}{10}+\frac{2}{10} \times \frac{2}{10} \\
& =\frac{2}{25}
\end{aligned}
$$

$\mathrm{P}($ sum is not 3$)=1-\mathrm{P}($ sum is 3$)$

$$
\begin{aligned}
& =1-\frac{2}{25} \\
& =\frac{23}{25}
\end{aligned}
$$

35. (a)

(b) (i) P (first bulb is good and second bulb is defective)

$$
\begin{aligned}
& =\frac{11}{15} \times \frac{4}{14} \\
& =\frac{22}{105}
\end{aligned}
$$

(ii) $\mathrm{P}($ both bulbs are good $)=\frac{11}{15} \times \frac{10}{14}$

$$
=\frac{11}{21}
$$

(iii) $\mathrm{P}($ neither bulb is good $)=\frac{4}{15} \times \frac{3}{14}$

$$
=\frac{2}{35}
$$

(iv) P (one bulb is defective)
$=\mathrm{P}($ first is good and second is defective)
$+\mathrm{P}($ first is defective and second is good)
$=\frac{11}{15} \times \frac{4}{14}+\frac{4}{15} \times \frac{11}{14}$
$=\frac{44}{105}$
36. (a)

First Outcome

		1	2	3	4	5	6
䔍	6	$(1,6)$	$(2,6)$	$(3,6)$	$(4,6)$	$(5,6)$	
	5	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$		$(6,5)$
	4	$(1,4)$	$(2,4)$	$(3,4)$		$(5,4)$	$(6,4)$
	3	$(1,3)$	$(2,3)$		$(4,3)$	$(5,3)$	$(6,3)$
	2	$(1,2)$		$(3,2)$	$(4,2)$	$(5,2)$	$(6,2)$
	1		$(2,1)$	$(3,1)$	$(4,1)$	$(5,1)$	$(6,1)$

(b) Total number of outcomes $=30$
(i) $\mathrm{P}($ both numbers more than 4$)=\frac{2}{30}$

$$
=\frac{1}{15}
$$

(ii) $\mathrm{P}($ sum of numbers is 12$)=0$
(iii) $\mathrm{P}($ product is less than 6$)=\frac{8}{30}$

$$
=\frac{4}{15}
$$

(iv) P (neither counter has an odd number)
$=\mathrm{P}($ both counters have even numbers $)$
$=\frac{6}{30}$
$=\frac{1}{5}$
37. (i) (a) P (girl who comes to school by public transport)
$=\frac{8}{40}$
$=\frac{1}{5}$
(b) P (boy who comes to school by private transport)
$=\frac{7}{40}$
(c) P (pupil who comes to school by public transport)
$=\frac{20}{40}$
$=\frac{1}{2}$
(d) $\mathrm{P}($ pupil is a boy $)=\frac{19}{40}$
(ii) (a) $\mathrm{P}($ both female $)=\frac{21}{40} \times \frac{20}{39}$

$$
=\frac{7}{26}
$$

(b) P (neither are boys taking public transport)

$$
\begin{aligned}
& =\frac{28}{40} \times \frac{27}{39} \\
& =\frac{63}{130}
\end{aligned}
$$

38. (a)

(b) (i) $\quad \mathrm{P}($ blue, red $)=\frac{1}{3} \times \frac{1}{2}$

$$
=\frac{1}{6}
$$

(ii) P (same colour at both spins)
$=\mathrm{P}($ blue, blue $)$ or $\mathrm{P}($ red, red $)$ or $\mathrm{P}($ yellow, yellow $)$
$=\frac{1}{3} \times \frac{1}{3}+\frac{1}{2} \times \frac{1}{2}+\frac{1}{6} \times \frac{1}{6}$
$=\frac{7}{18}$
(iii) P (different colours at both spins)
$=1-\mathrm{P}($ same colour at both spins $)$
$=1-\frac{7}{18}$
$=\frac{11}{18}$

